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Abstract—We propose a new methodology for large-scale subjective quality assessment of
compressed still images in the high fidelity range (medium quality to visually lossless). It
combines two different assessment protocols, one based on pairwise comparisons, the other
aimed at obtaining absolute opinions. The methodology is designed to allow assessing the
range of qualities not well-covered by previous methodologies, and to be suitable for large-scale
crowd-sourced experiment setups. This new methodology was applied to create CID22 — the
Cloudinary Image Dataset ’22. It is a large set of 22,153 annotated images, mostly in the
medium-high quality to near visually lossless range, originating from 250 pristine images
compressed using JPEG, JPEG 2000, JPEG XL, HEIC, WebP, and AVIF, with a dense sampling of
encoder settings. The quality scores are based on 1.4 million opinions. Using this data, we
evaluate the performance of the various image encoders as well as various objective metrics.

BETTER DISPLAY and camera technology,
increased storage capabilities, broadband Internet,
and advances in image coding have created the
conditions for high fidelity images to become
increasingly feasible, desirable and widespread.
However, quality assessment standards such as
ITU-R Rec. BT.500 [1] and AIC-1 [2] are not
very suitable for the range between high quality
and visually lossless, as the quality scores ob-
tained in this way tend to saturate at relatively
low fidelity. The AIC-2 Annex B [3] methodology
approaches the problem from the other end: it
is based on a very sensitive flicker test that will
catch even the slightest visual distortion. It is a
protocol that leads to binary results: an image
is either visually lossless or it is not. Therefore,
for somewhat lower fidelity targets and more eco-
nomical bitrates, the test might not be adequate.

In this context, the JPEG Committee has
launched a new activity aiming at developing a
new standard for subjective and objective im-
age quality assessment (IQA), known as AIC-
3, which is sensitive and discriminative in the

currently uncovered range from high quality to
near visually lossless quality (cf. Figure 1). A call
for contributions on subjective IQA methods [4]
was announced in October 2022.

In response to this AIC-3 call for contribu-
tions, we propose a new subjective IQA method-
ology. It is based on a dual approach combining
the results of two different assessment protocols,
making it feasible to perform a large-scale assess-
ment task within a reasonable budget and time
frame. We present the Cloudinary Image Dataset
(CID22), a set of 22,153 images, originating from
250 pristine reference images. We discuss how
this dataset was constructed, as well as the meth-
ods we used to obtain accurate quality annotations
— mean bias-corrected opinion scores (MCOS
scores). Besides the assessment protocols and
experiment setup, we discuss outlier detection and
bias correction procedures, as well as the analysis
required to combine the results of the two dif-
ferent experiment types. Then we present results
on encoders for various image codecs (JPEG,
JPEG XL, WebP, and AVIF), both in terms of
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Figure 1. Image quality ranges covered by existing and upcoming AIC standards.

compression (bitrate-distortion) and in terms of
visual consistency of encoder settings; we believe
this latter aspect has not been investigated in
the IQA literature before. Finally we evaluate
objective metrics in terms of their correlation
with the subjective results, and propose a new
objective metric called SSIMULACRA 2.

RELATED WORK
Compared to lab-based IQA datasets, the

number of images in CID22 — 250 pristine im-
ages, 21,903 distorted images — is rather large:
for example, the LIVE IQA database [5], [6] has
29 pristine and 779 distorted images, and the
Tampere Image Database TID2013 [7] has 25
pristine and 3000 distorted images.

Crowd-sourced IQA datasets like KADID10k
[8] (81 pristine, 10,125 distorted images) and the
PieApp dataset [9] (200 pristine, 20,280 distorted
images) are larger. The main difference between
CID22 and these existing datasets (both the lab-
based ones and the crowd-sourced ones) is the
types and amplitudes of the distortions: CID22
covers only image compression and a specific
range of qualities (medium quality to near vi-
sually lossless), as opposed to the wide range
of distortions and qualities contained in existing
datasets. For example, in the KADID10k set,
only two out of 25 distortion types correspond
to image compression (JPEG and JPEG 2000),
and out of the 5 distortion levels, only 2 or 3 are
within the quality range that would be typically
used in practice for still images (the remaining
distortion levels are too strong). In other words,
out of the 10,125 distorted images, less than 5%,
perhaps 400 images, are (directly) relevant for
practical image compression use cases. TID2013
similarly contains relatively few distorted im-
ages relevant to image compression. The PieAPP
dataset contains a wide variety of distortion types,
but again only few distortions relevant to image

compression (again JPEG and JPEG 2000), and
mostly in the extremely low quality range.

As a result, CID22 is possibly less relevant
than these existing datasets for research into
modeling the human visual system and subjective
quality perception in general, but more relevant
to study the range of qualities typically used in
practical image compression applications.

The KonJND-1k database [10] contains data
on a large number of pristine images (1008) and
the distortions are relevant to image compression
(JPEG and BPG, which is similar to HEIC as
it is based on HEVC). This dataset provides
data related to the picturewise just noticeable
difference, i.e. the threshold of distortion where
an average observer can notice (or object to)
compression artifacts. While relevant for practical
image compression applications, a limitation of
this dataset is that it does not allow compar-
ing different image codecs (every pristine image
was only compressed with one codec) and only
provides information on a specific quality point,
rather than a range of qualities.

IQA protocols
In [11], an overview is presented of the vari-

ous image quality assessment protocols described
in AIC-1 [2] and AIC-2 [3]. Single stimulus ap-
proaches like ACR and ACR-HR are suitable for
assessing the appeal of a distorted image, but not
the fidelity, since the test subjects cannot compare
a stimulus to a reference image. The DSCQS
and DSCS protocols [1], even though they are
double stimulus approaches, are also more suited
for assessing appeal rather than fidelity: the test
subject does not know which stimulus is the
‘correct’ reference image, so it is possible that
a distorted image will get a score that is ‘better
than the original’. This typically happens when
the reference image is noisy or grainy, and com-
pression artifacts act like a denoising filter. The
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DSIS protocol is suitable for assessing fidelity,
but since the stimuli are presented side-by-side,
it is not discriminative in the high fidelity range.
Comparing two very similar images side-by-side
is, after all, a rather hard task. There is even
a genre of puzzles (“spot the 7 differences”)
devoted to specifically this task. Hence it is not
surprising that when using the DSIS protocol,
MOS confidence intervals overlap with those of
the reference image at relatively low bitrates.

In-place image comparison (as opposed to
side-by-side) makes it considerably easier to spot
the differences. An extreme example of this is
the flicker test described in AIC-2 Annex B. This
protocol allows test subjects to notice even the
tiniest visual difference, and can be used to assess
whether a codec can achieve full visually lossless
compression. However at somewhat lower quali-
ties, the outcome of this test will simply be “no,
not visually lossless”. So it is not discriminative
in the range below visually lossless.

By amplifying the visibility of distortions,
boosted triplet comparison [12] improves the dis-
criminative power of pairwise comparisons (PC).
Additionally, by presenting three stimuli (refer-
ence and two distorted images), it can assess
fidelity, unlike double stimulus pairwise compari-
son protocols which are effectively assessing only
appeal. One of our proposed protocols is effec-
tively a variant of boosted triplet comparison.

Pairwise comparisons between distorted im-
ages derived from the same reference image, with
the simple question “which image has the highest
quality?” (with a binary or ternary answer) allow
making a detailed ranking of distorted images by
perceived quality, without necessarily requiring a
large amount of opinions. While the number of
pairs is O(n2), it is not necessary to exhaustively
obtain opinions on all of these pairs. The main
problem with this approach is that it only leads
to a ranking, i.e. relative mean opinion scores
(RMOS), where the lowest ranked image gets a
score of 0 and the highest ranked image gets a
score of 1. Such RMOS scores cannot meaning-
fully be compared across images originating from
different reference images.

A Thurstonian analysis of pairwise compar-
isons allows expressing RMOS values in abso-
lute units of just noticeable difference (JND), or
rather, just objectionable difference [13]. These

are comparable across images originating from
different reference images. However, in practice
this approach tends to only be reliable for low
JND values. At higher distortion levels, compar-
ing JND values across different reference images
becomes problematic. For example, one distorted
image X may be 3 JND units removed from
reference image A, while another distorted image
Y may be 4 JND units removed from reference
image B, but that does not necessarily imply that
the MOS score of X is higher than the MOS
score of B when both the image content and
the distortion types are different. The number of
noticeable ‘steps’ a distorted image is removed
from a reference image is not necessarily in-
versely proportional to its perceived quality. For
example, one can imagine that if the distortion
is a color shift from green-blue to a purple-
blue, there might be many intermediate steps of
distortion amplitude that are noticeable different,
while if the distortion is a Gaussian blur, only
few intermediate steps might be noticeable. Still,
the image with the shifted color might receive a
higher MOS score than the blurred one.

It is therefore hard to accurately convert
scores obtained through pairwise comparisons
to absolute quality categories across a range of
image content and distortion types. While ac-
curate rankings can be obtained, the rankings
are separate per reference image and interpreting
them in a consistent absolute way is hard when
the distance from the reference grows. Boosting
allows improving the accuracy of the rankings,
but it does not solve the problem of divergence
at higher JND (or lower RMOS) values.

Impairment scale methodologies like DSIS [1]
have the advantage that they lead to mean opinion
scores (MOS) on an absolute scale, which can
be directly compared across different reference
images. They do however require collecting many
opinions in order to obtain MOS scores that are
sufficiently accurate, and even then, confidence
intervals tend to be too large to allow accurately
ranking distorted images. This is a problem when
the number of distorted images to be tested is
large or the range of qualities is relatively narrow.

A hybrid approach combining MOS and PC
tests was previously proposed [14]. We did not
apply active sampling to maximize the expected
information gain of paired comparisons. Avoiding
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the dependency on previous test rounds in prac-
tice simplifies crowd-sourcing workflows, since a
single batch of tasks can be used.

ASSESSMENT PROTOCOLS
We propose the following hybrid approach:

• pairwise comparisons (Triple Stimulus
Boosted Pairwise Comparison, TSBPC) are
performed in order to produce RMOS scores,
covering all distorted images; the comparisons
are mostly done between different distortion
types (different encoders) at not-too-different
distortion amplitudes;

• absolute grading (Double Stimulus Boosted
Quality Scale, DSBQS) is performed to ob-
tain MOS scores for a subset of the distorted
images (“anchors”);

• MOS scores for all non-anchor images are
interpolated based on the RMOS scores and
the anchor MOS scores.

Triple Stimulus Boosted Pairwise Comparison
The TSBPC protocol consists of displaying

three stimuli: a reference image R, distorted
image A, and distorted image B. The reference
image is displayed on the left side of the screen
and the participant knows this is the reference
image. On the right side of the screen, one
distorted image is displayed, and the participant
can freely switch between image A and image B
by pressing a key or clicking a button; this toggles
between the two images, replacing them in-place
and instantaneously. Half of the participants see
A first, the other half sees B first. There is no
time limit and no limit on how often and how
quickly the distorted images are switched. Addi-
tionally, the images are displayed with upscaling
in order to fill the screen height minus the space
needed for the interface. After switching at least
two times, the participant can submit a ternary
response: “A is best”, “B is best”, or “I can’t
choose”.

The purpose of this approach is to apply some
amount of boosting [12] to the triplet comparison,
in order to obtain a ranking that is as precise as
possible, i.e., avoiding “I can’t choose” cases that
are only due to the differences being too small
to notice in a more superficial comparison. The
images are scaled up to ensure that the physical

dimensions are large enough also on high density
displays; the lack of switching restrictions al-
lows participants to effectively perform a “manual
flickering effect”. However, the images are not
altered to exaggerate pixel-wise differences.

Double Stimulus Boosted Quality Scale
The DSBQS protocol is similar to the well-

known DSIS protocol [1] with one major differ-
ence: instead of displaying the reference image
and the distorted image in a side-by-side way,
only one image is shown, and the participant
can freely switch between the reference image
and the distorted image. The interface marks
which of those two (reference or distorted) is
currently being displayed. Again, there is no
time limit and no limit on how often and how
quickly the images are switched. The images
are not displayed with scaling to fit the screen,
but at ’dpr1’ resolution, i.e. how the image gets
displayed by default in a web browser when
the image is in a simple <img> tag without
additional layout — in case of normal-density
screens, this means one image pixel corresponds
to one display pixel (1:1); in case of high-density
(‘retina’) screens, this means one image pixel
corresponds to 2x2 display pixels (2:1). In other
words, one image pixel corresponds to one CSS
pixel[15], which theoretically corresponds to a
visual angle of 0.0213 degrees (though in practice
this may only be an approximation). The aim is
to make the viewing conditions as uniform as
possible between test subjects — although in a
crowd-sourced setup, large differences in viewing
conditions will inevitably remain.

After switching at least two times, the partici-
pant can submit a numerical response on a semi-
continuous scale from 0 to 10, which is described
to the participants as follows:
1: very low quality; very annoying artifacts
3: low quality; mildly annoying artifacts
5: medium quality; no annoying artifacts
7: high quality; no visible artifacts
9: very high quality; no visible difference at all.

Compared to the the five-grade impairment
scale of the DSIS method [1], the quality scale of
DSBQS has more resolution in the high fidelity
range: DSIS scale 4 (“perceptible, but not annoy-
ing”) corresponds to DSBQS scale 5 (“medium
quality; no annoying artifacts”). In this sense,
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not only does the methodology apply boosting
in the viewing conditions (by allowing in-place
switching), it also uses a ‘boosted’ quality scale.

Responses can be registered by adjusting a
slider which is initially in the middle (5) and
which can be moved using the mouse in incre-
ments of 0.5, or using the keyboard arrow keys
in increments of 1.

In this protocol, while “manual flickering” is
still allowed, the images are displayed without
additional upscaling (only adjustment for high-
density displays), in order to make the condi-
tions more consistent across participants and to
limit the visibility of artifacts to a relevant level.
Effectively, the experimental setup is similar to
opening the reference image and the distorted im-
age in two browser tabs and manually switching
between the two tabs to see the differences before
making a judgement on the image quality.

EXPERIMENT SETUP
The goal of our experiment was to create a

large dataset of quality-annotated images, cover-
ing various types of image content. The distor-
tions of interest are the compression artifacts of
image codecs. We focus on codecs relevant to
web delivery and choices of encoders and encoder
configurations that are relevant for a production
environment (i.e., reasonable encode speeds).

Selection of Reference Images
An overview of the set of reference images

is given in Figure 2. All the images have pixel
dimensions of 512×512. Most were obtained by
cropping and downscaling high-resolution photos
sourced from the royalty-free stock photography
service Pexels. The reference images are clustered
into 15 categories according to image content.

Selection of Distorted Images
The following codecs and encoders were used

to produce distorted images:

• JPEG: mozjpeg 4.1.0 (3 Mpx/s)
• JPEG 2000: Kakadu 8.2.2 (8 Mpx/s)
• JPEG XL: libjxl 0.6.1 (3 Mpx/s)
• HEIC: libheif / x265 2.8.0 (2 Mpx/s)
• WebP: libwebp 1.0.3 (6 Mpx/s)
• AVIF (aom s7): libaom 3.1.2 (2 Mpx/s)
• AVIF (aom s1): libaom 3.1.2 (0.1 Mpx/s)

• AVIF (aurora): wzav1 1.0.2 (1 Mpx/s)
• AVIF (aurora slow): wzav1 1.0.2 (0.3 Mpx/s)

For each of these encoders, between 8 and
11 quality settings were used, relatively densily
sampling the medium to high fidelity range. For
example, for mozjpeg, a default cjpeg command
line was used, using the following values for the
-quality parameter: 30, 40, 50, 60, 65, 70, 75,
80, 85, 90, 95. We used fixed encoder settings
(as opposed to fixed bit rates) in order to better
match typical usage patterns, as well as to be able
to assess encoder consistency.

Some of the modern encoders can typically be
configured to reach different trade-offs between
speed and compression. We mostly used default
configurations (which are most likely to be used
in practice). While encoder speed typically varies
depending on the image content and the quality
setting, as an indication, the approximate encode
speed in megapixels per second (Mpx/s) is indi-
cated in the list above (single-threaded encoding
on an Intel Core i7-9750H CPU at 2.60GHz).
For the two AVIF encoders with a significantly
slower configuration (aom s1 and aurora slow)
only partial data was collected.

Selection of Stimuli
For the TSBPC (RMOS) experiment, we

conceptually considered all triplets of the form
(R,A,B) where both A and B are derived
from reference image R, and eliminated ‘trivial’
triplets based on bits per pixel of the compressed
image and some weak prior assumptions about
codec performance. For example, a 0.5 bpp JPEG
image versus an AVIF image at more than 1.5
bpp was considered a trivial comparison (likely
the AVIF would be better), while a 0.5 bpp AVIF
versus a 1.5 bpp JPEG image was not considered
trivial, though a 0.3 bpp AVIF versus a JPEG
image at more than 2 bpp would be. This filtering
step helps to avoid collecting opinions expected to
bring little new information. From the remaining
triplets, we randomly sampled 105,155 triplets
and then aimed to collect 10 opinions per triplet.

For the DSBQS (MOS) experiment, we used
10 “anchor” distorted images per reference image
plus the reference image itself (presented as a
distorted image). The following encoder settings
were used as anchors: mozjpeg q30, q50, q70,
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Figure 2. Thumbnails of all reference images in the CID22 set, clustered into 15 categories.
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q90; libjxl q30, q60, q85; avif aurora quantizer
settings 37, 32, 28. For each of the 2750 stimuli,
we aimed to collect at least 100 opinions. Each
test session started with 4 training images to ex-
pose the participant to examples of very low and
very high quality, before the actual test started.

In both experiments, each test session con-
sisted of 30 questions plus 2 additional ’honey-
pot’ questions which were inserted randomly and
used for verification. In the case of triplet com-
parisons, these were ‘obvious’ comparisons (A is
clearly best) where a wrong answer (B is best, or
“I cannot choose”) would cause the session to be
discarded. For the absolute grading, these were
one near-lossless image (where a score below
5 would lead to disqualification) and one very
poor image (where a score above 5 would lead
to disqualification). Participants could engage in
up to 4 sessions, but only with a 24-hour break
between the sessions in order to prevent fatigue.
They were instructed to use a desktop or laptop
for the experiment, and this was checked during
recruitment.

PARTICIPANT SCREENING
The crowd-sourcing platform Subjectify was

used to perform this experiment. In total,
1,071,300 TSBPC opinions were collected in
35,710 individual test sessions, as well as 334,920
DSBQS opinions collected in 11,164 individual
test sessions. These numbers do not include par-
ticipants who failed the initial ‘honeypot’ screen-
ing. The experiments were conducted in the first
half of 2022.

Inevitably, a fraction of the participants in a
crowd-sourced experiment is not providing high-
quality responses. In order to reduce the noise
introduced by such responses and to improve the
accuracy of our dataset, a further screening step
beyond the ’honeypot’ questions was applied.

In the DSBQS experiment, sessions were dis-
carded when one or more of these conditions were
true: 1) a reference image (presented as a dis-
torted image) received a score below 5; 2) more
than 20 percent of the responses of the session
(including the training and verification questions)
was exactly the score of 5, which corresponds to
the initial position of the slider; 3) the participant
had switched to a mobile device (phone or tablet)
between recruitment and actually performing the

test, despite the instruction to use a desktop or
laptop. This extra screening step reduced the
average number of opinions per anchor image
from 122 to 101.

Outlier detection
Outliers were detected and discarded as fol-

lows in the TSBPC experiment. First, for each
compared triplet (R,A,B), the average opinion
MO(A,B) was computed by counting A > B
opinions as 1, A < B opinions as -1, and
“I cannot choose” as 0, and then taking the
arithmetic mean. Next, for each participant, the
agreement of their submitted opinions with av-
erage opinions was computed as follows: if the
participant answered A > B and MO(A,B) >
0.3 or if they answered “I cannot choose” and
|MO(A,B)| ≤ 0.3, then it counts as 1 (agree-
ment); if the participant answered A > B and
MO(A,B) < −0.3 or if they answered “I
cannot choose” and |MO(A,B)| > 0.5, then it
counts as -1 (disagreement); otherwise it counts
as 0 (neutral). If the average agreement (over
all 30 triplets evaluated in a session) was below
0.25, then that session was discarded. In total,
5257 sessions (14.7% of all TSBPC sessions)
were discarded in this way. The result is that
participants answering randomly or carelessly are
not included in the RMOS computation.

In the DSBQS experiment, outlier participants
who frequently disagreed with the general opin-
ion were detected as follows. For each submitted
score S, the difference between S and the average
score A for that stimulus was divided by the
standard deviation in the set of all scores for that
stimulus in order to compute a normalized dif-
ference (how many standard deviations removed
from the mean). If the mean of the normalized
differences in a session was greater than 1 or
less than -1 (indicating very biased scoring, either
very lenient or very strict), or if the standard
deviation of the mean of the absolute normalized
differences was greater than 1 (indicating random
or very polarized scoring), then the session was
discarded. Finally, the first three scores of each
session were also discarded (effectively consider-
ing them as part of training).

After outlier removal, in the TSBPC exper-
iment, every distorted image was on average
compared to 9 other images, with 8.7 opinions
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per comparison (in total 395 triplets per reference
image). In the DSBQS experiment, after outlier
removal (and discarding the first three scores of
each session), between 43 and 94 opinions were
left per image (mean: 63.6).

Bias Correction
Since in the DSBQS experiment every image

ends up getting scored by a different set of
participants, and every participant has their own
interpretation of the quality scale, it is useful to
apply a bias correction before computing mean
opinion scores. Scores were adjusted by shifting
all the scores of a session by an additive con-
stant, chosen per session so to make the mean
normalized difference, as computed for outlier
detection and in the range [-1,1], become equal
to zero. The resulting adjusted scores are clamped
to the [0, 10] range. For example, a ‘pessimistic’
participant who gave scores which are on average
0.8 standard deviations below the (tentative) MOS
of the images they rated, would have a mean
normalized difference of -0.8. Say the average
standard deviation is 2, then the adjustment con-
stant would be +1.6, so if the original scores are
(2, 3, 4.5, 10, 1.5, . . . ) then the adjusted scores
would be equal to (3.6, 4.6, 6.1, 10, 3.1, . . . ).

SCORE ANALYSIS
After bias correction, the mean corrected

opinion score (MCOS) was calculated for each
anchor image as ten times the average of the bias-
corrected scores for that stimulus. The resulting
values are on a scale from 0 to 100. The MCOS
score for the reference images was between 82.5
and 92.6 (mean: 88.3).

RMOS Computation
Our TSBPC experiment has an incomplete

and imbalanced design by necessity, since the
number of stimuli (let alone the number of pairs)
is much larger than the number of comparisons
done per participant. To compute relative mean
opinion scores (RMOS) from the TSBPC results,
we used the Elo rating system. Ratings are com-
puted independently per reference image. The
procedure we used is as follows.

All distorted images derived from a particular
reference image are treated as players in a tour-
nament. Every opinion of the form A > B was

counted as two wins of A against B, every “I
can’t choose” opinion was counted one win for
each image. Since it can happen that the worst
image loses against all other images, or the best
image wins against all other images, which would
lead to Elo scores of −∞ or +∞, we add 10%
of a tie (0.1 win for each) between all pairs A
and B (where A ̸= B).

Based on the win rates derived from the actual
opinions and the dummy opinions to enforce
monotonicity and to reflect the anchor MCOS
scores, converged Elo ratings can then be com-
puted. This is the limit of the Elo ratings as the
number of games played goes to infinity. Finally
these ratings are normalized to the interval [0, 1]
to obtain the RMOS scores, so 0 corresponds to
the image with the lowest Elo score (typically
the q30 JPEG image) and 1 corresponds to the
image with the highest Elo score (typically the
q95 JPEG or JPEG XL image).

Monotonicity constraint
Furthermore, besides the actual pairwise opin-

ions, additional information is taken into consid-
eration in the Elo computation. While in principle
(due to encoder bugs or strange phenomena)
encoders do not necessarily behave monotoni-
cally, we made the assumption that all encoders
we tested do in fact behave monotonically. A
compressed image with a larger file size (higher
quality setting) is assumed to be better than (or
at least as good as) an image with a smaller
file size if it is encoded with the exact same
encoder (and at the same speed setting). Without
this “forced monotonicity”, it can happen that e.g.
a q40 JPEG gets a lower score than a q30 JPEG
due to the incomplete and imbalanced sampling.
We add 200 dummy opinions for each pair of
same-codec images to enforce the monotonicity
constraint.

MCOS disagreement mitigation
Finally, for pairs of anchor images, additional

opinions are added as follows. If the 90% con-
fidence intervals of the MCOS scores of both
images do not overlap, then the image with the
higher MCOS score is considered to be better a
number of times (we used the arbitrary constant
20) proportional to the gap between the confi-
dence intervals — e.g. if image A has MCOS
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score 60±4 and image B has MCOS score 83±5,
then the gap between the confidence intervals is
78 − 64 = 14, so 14 × 20 = 280 additional
opinions “B > A” are added. If the confidence
intervals do overlap, then 200 dummy opinions
are added, consisting of “I can’t choose” opinions
proportional to the amount of overlap, and “one
is better than the other” opinions proportional to
the amount of non-overlap — e.g. if image C has
MCOS score 70 ± 5 and image D has MCOS
score 74 ± 3, then the union of the intervals is
[65, 77] and has size 12, the region of overlap is
[71, 75] with size 4, so 200 × 4/12 opinions “I
can’t choose between C and D” and 200×8/12
opinions “D > C” are added.

Interpolating and extrapolating MCOS
MCOS scores of the anchor images can then

be used to interpolate MCOS scores for the
other images using the RMOS scores. Simple
linear interpolation is used based on the nearest
neighbors. There is one caveat: there are still
some (rare) cases where RMOS scores and anchor
MCOS scores disagree on the order of a pair.
If MCOS(A) > MCOS(B) while RMOS(A) <
RMOS(B), then the MCOS scores of A and B
are slightly adjusted by moving the score of A
from the mean opinion towards the 20th per-
centile and the score of B towards the 80th per-
centile until the disagreement is resolved. There
were 39 such cases; a typical example would be a
high-bitrate AVIF anchor getting a slightly lower
MCOS score than a lower-bitrate AVIF anchor.

At the extremes, extrapolation is done as fol-
lows. The maximum RMOS score of 1 is assumed
to correspond to the MCOS score of the reference
image — while the reference image was not
presented as part of the pairs to be compared in
the TSBPC, it is a reasonable assumption that
the least distorted stimulus is indistinguishable
from the reference. In fact, the q90 JPEG anchor
has an average MCOS of 86.7, which is quite
close already to the average MCOS score of the
reference image (88.3). There are several encoder
settings (e.g. q95 JPEG and q95 JPEG XL) that
achieve better RMOS scores than this, so it can be
expected that the image with the highest RMOS
score is in fact visually lossless. So arguably, no
actual extrapolation is done at this end. In case
a distorted anchor obtained a (slightly) higher

Table 1. MCOS adjustments during interpolation.
anchor count min mean max
avif cq37 5 -1.98 -1.3121 0.00
avif cq32 11 -2.19 -0.1170 1.11
avif cq28 23 -1.06 0.8176 2.56
libjxl q30 0
libjxl q60 12 -0.85 -0.4291 0.27
libjxl q85 6 -0.67 -0.2845 0.00
mozjpeg q30 0
mozjpeg q50 3 -0.41 -0.2500 0.00
mozjpeg q70 12 -1.12 -0.3562 0.28
mozjpeg q90 33 -1.66 -0.5777 0.42
Reference 33 0.00 0.8864 2.59
Total 138 -2.19 0.0671 2.59

MCOS score than the corresponding reference
image, both MCOS scores are again adjusted
as described above, moving the score for the
distorted image towards the 20th percentile and
the score for the reference image towards the
80th percentile until the scores are in the expected
order. There were 28 cases where the q90 JPEG
anchor image had a higher MCOS score than the
reference image, 4 cases where this happened for
the q85 JPEG XL anchor, and once for the highest
bitrate AVIF anchor. Table 1 gives an overview
of all the adjustments done to the MCOS scores,
either to resolve remaining rank-order disagree-
ments, or to ensure that no distorted image gets
a higher score than the reference image. About
5% of the scores were adjusted in this way. The
amplitude of the changes was small: the largest
difference is 2.59 MCOS points (on a scale from
0 to 100), the average absolute change amongst
the adjusted anchor scores was 0.72 MCOS points
(and 95% of the anchor scores were not adjusted).

The minimum RMOS score of 0 corresponds
to an anchor image in 97% of the cases; in 87% of
the cases, it was specifically the q30 JPEG image
that was the distorted image with the minimum
RMOS score. In these cases, no extrapolation at
all is required. In the remaining 3% of the cases
(8 out of 250 reference images), where RMOS
score 0 does not correspond to an anchor image,
we extrapolate by arbitrarily assuming the lowest
score to correspond to 0.75 times the mean plus
0.25 times the 20th percentile opinion for the
worst anchor image. This ends up assigning an
extrapolated score to the worst image of 3 to 4
MCOS points lower (on a scale from 0 to 100)
than the worst anchor image for that reference
image.
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Final MCOS scores
The bulk (91.7%) of the images in the CID22

dataset have an MCOS score of at least 50, i.e.
they correspond to “medium quality” or better.
Figure 3 shows the distribution of MCOS scores.
Most images are in the range between medium-
high quality (MCOS score 60) and visually loss-
less (MCOS score around 88). All of the tested
encoders are represented well acrosss this range.

Confidence Intervals
Bootstrapping was applied on the entire score

analysis process to obtain confidence intervals on
the MCOS scores: 200 iterations of resampling-
with-replacement were done on both sets of opin-
ions (TSBPC and DSBQS, resampling was done
after participant screening and bias correction),
re-calculating the MCOS scores, Elo rankings and
MCOS interpolation in every iteration. Across all
MCOS scores, the width of the 90% confidence
intervals obtained in this way is 4.457 on average,
with standard deviation σ = 1.254. We consider
these confidence intervals to be small and the
accuracy of the MCOS scores to be quite high.

METHODOLOGY DISCUSSION
After describing the experiment protocols,

screening procedures and score analysis, we now
discuss some aspects of the proposed assessment
methodology. In particular, we evaluate the effect
of participant screening and bias correction, the
assumption of monotonic encoder behavior and
the impact of imposing it as a constraint in
RMOS computation, and the relationship between
sample size and accuracy. Finally we propose
some potential improvements to the protocols.

Effect of screening and bias correction
The overall impact of bias correction in com-

puting MCOS scores is relatively mild. If this step
is skipped, and instead the uncorrected scores are
computed, performing interpolation from anchors
to the other images in the same way as before,
we get MOS scores that are close to the bias-
corrected MCOS scores: the Kendall rank corre-
lation coefficient is 0.9411, Spearman rank cor-
relation is 0.9955, Pearson correlation is 0.9953,
mean absolute error is 1.006, mean square error
is 1.795, and peak error is 10.82.

When additionally also not doing any partici-
pant screening, outlier removal (besides the ‘hon-
eypot question’ screening that was already done
by the platform Subjectify), and not discarding
the first three opinions of each DSBQS session,
the additional accuracy drop is also mild: KRCC
is 0.9361, SRCC is 0.9947, PCC is 0.9947, MAE
is 1.139, MSE is 2.197, and peak error is 10.04.

It is in our opinion still useful to perform
these steps in order to improve the accuracy of
the aggregated quality annotations. The effect is
overall rather subtle though.

Monotonicity constraint in RMOS computation
By contrast, removing or relaxing the mono-

tonicity constraint in the computation of RMOS
scores does have a significant impact on the
scores that are obtained. Removing the constraint
entirely leads to much noisier MCOS scores:
KRCC is 0.5559, SRCC is 0.7417, PCC is 0.7755,
MAE is 7.222, MSE is 88.03, and peak error is
38.07 (compared to the MCOS scores computed
with the monotonicity constraint). Relaxing the
constraint by reducing the number of dummy
“higher bitrate is better” opinions per same-
encoder pair (from 200 to 20), so monotonicity is
encouraged but no enforced, still results in scores
that deviate quite strongly (KRCC is 0.8699,
SRCC is 0.9773, PCC is 0.9750, MAE is 2.773,
MSE is 12.78, and peak error is 15.88).

Removing the monotonicity constraint leads
to scores with a more concentrated distribution:
with the monotonicity constraint, the range from
the 5th percentile to the 95th percentile of the
MCOS scores (not including the reference im-
ages) is [45.7, 88.2], while without the mono-
tonicity constraint, that range is [51.5, 81.4]. Still,
even though the score range is narrower, the 90%
confidence interval of scores obtained without the
monotonicity constraint has an average width of
5.267 (σ = 1.462), as opposed to an average
width of 4.457 (σ = 1.254) for scores obtained
with the monotonicity constraint. So the mono-
tonicity constraint does contribute substantially to
more accurate and discriminative annotations.

We speculate that three factors are at play
to explain this substantial difference. Firstly, we
excluded most same-codec pairs from the TSBPC
experiment, as well as any pairs involving dif-
ferent codecs with a large difference in bitrate.
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Figure 3. Distribution of MCOS scores in the CID22 dataset, by encoder.

This biased sampling made it hard to reconstruct
monotonic results. Secondly, while images were
on average compared to 9 other images, due to
the random and biased sampling, some images
were compared to more images while others were
compared to perhaps only 2 other images, leading
to a large confidence interval since only 20 opin-
ions are available. In such cases, the monotonicity
constraint helps, since neighboring settings of the
same encoder may have been involved in more
comparisons, providing additional information.
Thirdly, the monotonicity constraint effectively
helps to improve the interconnections between
the opinions about various distorted images. For
example, if for one image the TSBPC opinions
indicate that webp q60 < mozjpeg q60 and also
that mozjpeg q65 < jxl q65, then the monotonic-
ity constraint allows deducing that webp q60 <
jxl q65 while without the monotonicity constraint,
this would not necessarily be the case. In this
way, assuming monotonicity allows constructing
a more robust RMOS ranking based on a sparse,
biased and noisy sampling of pairwise opinions.

The main downsides of enforcing monotonic-
ity are that it does not allow discovering erratic

nonmonotonic encoder behavior, and that adding
dummy opinions complicates a JND interpreta-
tion of the pairwise comparisons.

Effect of disagreement mitigation
The purpose of adding the MCOS-based

dummy PC opinions in the RMOS computation
is twofold: it complements the incomplete TS-
BPC data, and it helps to mitigate disagreements
between TSBPC and DSBQS opinions.

Skipping this mitigation step results in scores
with the following difference: KRCC is 0.7139,
SRCC is 0.8868, PCC is 0.9013, MAE is 4.4717,
MSE is 39.13, and peak error is 38.72.

Figure 4 shows an example of such a dis-
agreement. The DSBQS MCOS score for the
JPEG XL image on the left is higher than that
of the AVIF image on the right, but according to
the TSBPC data, the AVIF image is better (has
a higher Elo/RMOS score). Without mitigation,
this would lead to both images (and any other
image with an intermediate Elo score) getting
the same interpolated MCOS score. The disagree-
ment mitigation effectively causes the DSBQS
MCOS scores to prevail in case of disagreements.
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JPEG XL, q60 (0.62 bpp) reference AVIF aurora, cq37 (0.51 bpp)
DSBQS MCOS: 69.0 DSBQS MCOS: 59.3

‘raw’ TSBPC Elo: 1552 ‘raw’ TSBPC Elo: 1695
‘raw’ MCOS: 65.6 ‘raw’ MCOS: 65.6

CID22 MCOS: 67.1 CID22 MCOS: 56.7
Figure 4. Example of a disagreement between DSBQS and TSBPC data.

Fidelity versus appeal

When there are disagreements like this that
are not just the result of sparse sampling, we
speculate that it is often caused by the difference
between fidelity and appeal. For example, when
comparing the JPEG XL image in Figure 4 to
the AVIF image, some participants may prefer
the smoother AVIF image, even if it has a lower
fidelity compared to the reference image. In the
DSBQS experiment, the detail loss in the AVIF
image cause it to get a lower MCOS score — fi-
delity to the reference image is the only criterion.
In the TSBPC experiment though, participants
may not necessarily carefully compare the dis-
torted images to the reference, and rather focus on
the difference between the two distorted images,
where the smoother one can be the preferred one.

In the experiment that was performed to cre-
ate the JPEG AIC-3 CTC dataset [16], pairwise

comparisons were done (in a side-by-side way)
without presenting the reference image. Partici-
pants were asked to “select the image with the
highest visual quality”. Since participants did not
see the reference image, effectively they could not
assess fidelity, only appeal.

This posed a problem in particular for image
number 4, a digital artwork that contains inten-
tional (artistic) noise. Figure 5 shows a detail
from this image, compressed with JPEG and with
VVC. For VVC, the Thurstonian reconstruction
of the quality scale was erratic for this image. Our
conjecture is that this is caused by the difference
between fidelity and appeal: the VVC image
effectively denoises the reference image, which
is good for appeal but bad for fidelity. Since par-
ticipants could only assess appeal, this effectively
causes distorted images to be considered “higher
quality” than the reference image.
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JPEG at 2 JND reference VVC at 2 JND
Figure 5. AIC-3 image number 4 (detail): example of fidelity versus appeal.

Preservation of TSBPC preferences
Table 2 and Figure 6 show the effect of

the monotonicity constraint and the DSBQS dis-
agreement mitigation on the agreement between
raw TSBPC comparison results and the scores.
TSBPC delta (∆TSBPC) corresponds to the dif-
ference between the number of A > B opinions
and B > A opinions; the higher this number,
the clearer the consensus that image A is better
than image B. For example, if 1 participant
said A = B, 6 participants said A > B and
3 participants said A < B, then ∆TSBPC is
6 − 3 = 3. For a single pairwise comparison
where the overall opinion is not a tie, we say
image scores agree with the comparison if the
preferred image has a higher score.

Converting TSBPC results to RMOS scores,
even when using only the raw TSBPC data with-
out any mitigations, does not lead to perfect
agreement. Numerical scores induce a total order,
while TSBPC results include non-transitive pref-
erences and sampling error so it does not corre-
spond to any preorder. Inevitably, the mitigations
to enforce monotonicity and reduce disagreement

with DSBQS further reduce the agreement with
raw TSBPC results. Still, even with both mitiga-
tions, the MCOS scores arguably agree well with
the TSBPC opinions, especially when there is a
clear consensus.

The monotonicity constraint does not signifi-
cantly affect pairwise comparisons with a clear
consensus; it mostly affects triplets like a q60
JPEG image A versus a q65 JPEG B where 3
opinions are A > B, 1 opinion is A < B,
and 6 opinions are A = B. Its main effect is
to reduce such ‘noise’ and to ‘fill in the gaps’
where the triplet selection was too sparse. The
DSBQS disagreement mitigation however also
affects some of the pairwise comparisons with
clear consensus (say, ∆TSBPC > 5). In those
cases we situations where (probably somewhat
appeal-oriented) TSBPC results (based on 10
opinions per triplet) contradict (fidelity-oriented)
DSBQS results (based on 100 opinions per
image). The effect of this mitigation is to let
the DSBQS opinions take precedence in such
cases, to the extent that they do not violate the
monotonicity constraint; we wanted the quality
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Table 2. Agreement between scores and TSBPC.
mitigations avg

∆TSBPC none monoton. both ∆MCOS pairs
1 64.6% 54.1% 56.3% 1.98 12997
2 76.7% 67.4% 66.4% 3.76 11957
3 86.9% 79.6% 75.3% 5.76 11168
4 93.5% 87.8% 82.6% 7.76 11026
5 96.8% 93.5% 88.9% 10.08 11388
6 98.7% 96.6% 93.5% 12.59 11225
7 99.4% 98.6% 96.0% 14.83 10169
8 99.9% 99.4% 97.6% 17.11 8500
9 100.0% 99.8% 98.6% 19.26 5884
10 100.0% 99.8% 99.4% 21.19 3241
11 100.0% 100.0% 99.1% 20.60 454
12 100.0% 100.0% 100.0% 19.38 119

TSBPC delta

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6 7 8 9 10 11 12

without any mitigation without DSBQS disagreement mitigation MCOS

Figure 6. Agreement between scores and TSBPC.

annotations in CID22 to be more fidelity-based
than appeal-based.

Interesting to note is that on average, ∆MCOS
is approximately equal to ∆TSBPC times two.
If the difference in MCOS scores is 20 or more,
one can expect pairwise comparisons to be unani-
mous; if MCOS(A)−MCOS(B) is 10, then it can
be expected that ∆TSBPC is 5, so there is a clear
majority (e.g. 6 saying A > B, 1 saying A < B,
2 saying A = B). Smaller MCOS differences
correspond to increasingly narrow majorities in
pairwise comparisons.

Sample size
The cost of subjective testing is proportional

to the number of opinions that are gathered. We
can estimate the sample size that is required to
reach a reasonable accuracy by simulating smaller
sample sizes and measuring the accuracy of the
scores obtained from smaller samplings compared
to the scores obtained from the full sampling.
Figure 7 shows the RMSE between MOS scores
computed from random smaller subsets of the
opinion sampling (without applying the screening

and bias correction steps) and the MCOS scores
computed from the full set of opinions (after
screening and bias correction).

As a reminder: about 11% of the distorted
images were anchors for which we did a DSBQS
experiment, and we obtained about 122 opinions
before screening. For the full set of distorted
images, we sampled pairs (selected randomly
from the set of all pairs after pruning pairs with a
low expected information gain based on a priori
considerations) and did a TSBPC experiment,
comparing every image on average to 10 others
and gathering about 10 opinions per pair before
screening. Based on the tables in Figure 7, a
possible recommendation for future experiments
could be to aim for at least 80 DSBQS opinions
per anchor image and 5 TSBPC opinions per pair
(before screening), assuming a similar experiment
setup. Such a reduced sample size can still be
expected to produce annotations that are within
the 90% confidence interval of scores obtained
by a larger experiment.

Potential protocol improvements
In the TSBPC experiment, the reference im-

age could be included in the pairwise compar-
ison — i.e., in addition to triplets of the form
(R,A,B), triplets of the form (R,R,A) or
(R,A,R) could be included. This would be par-
ticularly useful when either doing a stronger form
of boosting, or when the selection of encoder
settings does not allow assuming that the least
distorted image is effectively indistinguishable
from the reference image.

Variants of the TSBPC protocol could be
considered. The protocol as we implemented it
presents a triplet (R,A,B) by showing R on the
left side of the screen and allowing the participant
to switch between A and B on the right side,
so switching toggles between R|A and R|B. In
practice, this might cause participants to focus
mostly on the right hand side of the screen,
which could lead to a predominantly appeal-
oriented judgement rather than a fidelity-oriented
one. It could be better to let switching toggle
between A|B and R|R. This way the fidelity
of the distorted images to the reference can be
assessed directly (without eye travel). However, it
might require more time though for participants
to compare a pair in this way. Also, it could
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AVERAGE of RMSE TSBPC sample %
DSBQS sample % 2 5 10 15 20 30 40 50 60 70 80 90 100

5 12.79 12.11 11.53 11.33 10.78 10.84 10.38 10.23 10.06 9.58 9.64 9.41 9.09
10 10.22 9.52 9.00 8.50 8.24 7.78 7.53 7.29 6.94 6.80 6.60 6.48 6.34
15 8.69 7.91 7.25 6.92 6.61 6.17 5.86 5.55 5.40 5.24 5.03 4.97 4.81
20 7.59 6.75 6.16 5.77 5.54 5.02 4.80 4.58 4.39 4.30 4.11 4.10 4.01
30 6.14 5.44 4.87 4.39 4.17 3.85 3.58 3.47 3.29 3.22 3.01 3.04 2.96
40 5.38 4.61 4.03 3.69 3.44 3.14 2.91 2.81 2.68 2.57 2.55 2.47 2.42
50 4.91 4.18 3.54 3.20 2.95 2.75 2.54 2.40 2.30 2.22 2.16 2.15 2.08
60 4.59 3.79 3.25 2.92 2.67 2.42 2.28 2.11 2.05 1.93 1.93 1.89 1.83
70 4.34 3.58 2.99 2.70 2.47 2.18 2.06 1.91 1.79 1.76 1.72 1.67 1.69
80 4.16 3.43 2.86 2.51 2.31 2.07 1.88 1.77 1.69 1.64 1.57 1.53 1.50
90 4.03 3.30 2.69 2.44 2.19 1.92 1.73 1.64 1.57 1.50 1.47 1.45 1.40
100 3.93 3.20 2.60 2.31 2.09 1.81 1.66 1.56 1.47 1.41 1.37 1.34 1.31

Figure 7. An estimation of the relationship between accuracy and sample size. The table lists the root mean
square error (RMSE) between MOS scores obtained from a random subset of the samples (without screening
and bias correction steps) and the MCOS scores obtained from the full sample.

effectively undo the boosting effect of in-place
switching, since a participant might make deci-
sions based mostly on the A|B view, ignoring the
reference image and doing a side-by-side pairwise
comparison. This could be avoided by presenting
the stimuli as A|R switchable to R|B, although
that would likely be more confusing. Another
option could be to show only a single image at
a time (R, A or B), with three buttons to toggle
between them (e.g., keyboard keys 1, 2, 3). This
way, a participant can switch between stimuli in
various ways (e.g., first alternating between A and
B, then alternating between R and A and then
alternating between R and B).

In the DSBQS experiment, we did not attempt
to model the effect of viewing conditions. We
tried to make the conditions as uniform as possi-
ble by only allowing the use of desktop or laptop
computers (not mobile phones) and by displaying
images at similar angular dimensions (to the
extent that this can be done in a crowd-sourced
experiment). Of course viewing conditions do
play an important role, and it would be interesting
for future experiments to gather more data on
this aspect. In particular, as mobile devices and
high-density displays are becoming increasingly
ubiquitous, it could make sense to perform an
experiment where opinions are gathered for three
different types of participants: normal-density,
high-density, and mobile, displaying images at
native screen resolution in each group. This could

bring insight into the effect of viewing conditions
on perceived quality — an effect that is likely not
simply a matter of rescaling the scores globally.
After all, while distortions are generally harder
to notice as the viewing distance increases (or
equivalently, the screen density), different types
of distortions will have different behavior. For
example, long-range color banding might remain
visible even at a larger viewing distance, while
blockiness might more rapidly become unnotice-
able as the viewing distance increases.

We only used images in the sRGB color space.
It would be interesting to investigate the effect
of wide color gamut and high dynamic range,
although this is currently challenging to do in a
crowd-sourced approach.

Potential methodology improvements
When combining the DSBQS and TSBPC re-

sults, effectively disagreements were resolved by
letting the more fidelity-oriented DSBQS results
take precedence. Both protocols aimed to assess
fidelity, but the TSBPC protocol nevertheless led
at least some participants to make an appeal-
based decision. An interesting alternative could
be to use double stimulus pairwise comparisons
(not presenting the reference image) in order to
explicitly assess appeal. Disagreements between
appeal-based rankings and fidelity-based MCOS
scores could then be studied, in order to get a
better understanding of the difference between
fidelity and appeal. This would also require the
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reference image itself to be included in the pair-
wise comparisons, and it should no longer be the
assumed that the reference image is the image
with the highest appeal (while by definition it has
the highest fidelity).

Another potential methodology improvement
could be to organize the experiment in two
rounds. After the first round, confidence intervals
can be computed for all scores, and images for
which the size of the interval is above a threshold
can be selected for a more focused second round
to gather additional opinions on specifically these
images.

ENCODER RESULTS
Figure 8 shows the overall performance of

four encoders relevant for web delivery. To ag-
gregate results over multiple images, we consider
the average bits per pixel and the median MCOS
score per encoder setting. This aggregation hides
significant image-dependent variation in the qual-
ity obtained using a given encoder setting, as seen
in the box plots that provide an indication of the
spread. Obviously the bpp is also strongly image-
dependent; the average does however indicate the
total compressed size of the corpus.

In practice, encoder settings are often chosen
using a “set it and forget it” approach where a
fixed setting is used for encoding many images,
and what matters is not that the median result
reaches a certain fidelity target, but that all (or
at least almost all) images reach a minimum
fidelity target. In other words, the worst-case per-
formance perhaps matters more than the median
performance when selecting an encoder setting.
Figure 9 shows the 5th percentile MCOS scores
per encoder setting.

Encoder consistency
Consistency is a desirable encoder feature

since it reduces the likelihood of ‘surprising’
results — in particular, ‘bad’ surprises where a
compressed image has a noticeably worse visual
quality than most other images encoded with the
same setting. To investigate the visual consistency
of the various encoders, we compute the standard
deviation of the MCOS scores obtained for each
encoder setting. Figure 10 shows these results.

All encoders exhibit the behavior that higher
quality settings produce more consistent results,
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Figure 8. Median performance of selected encoders.
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Figure 9. 5th percentile (worst-case) performance.

which is to be expected: as the MCOS scores get
closer to the highest possible value corresponding
to visually lossless, variance naturally diminishes.
At lower quality settings, consistency decreases
for all encoders, but there are clear differences:
JPEG XL is more consistent, while AVIF and
WebP are less consistent.

One way to interpret the results shown in
Figure 10 is as follows: if the goal is to reach
a certain minimum MCOS score Mmin for most
encoded images, it is advisable to aim use an
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encoder setting that leads to a higher average
MCOS score Mavg with a standard deviation σ
such that Mavg −mσ ≥ Mmin, where the choice
of m determines the amount of ‘risk’ (of not
obtaining the minimum score) one is willing to
take: assuming a Gaussian distribution, m = 1
implies that about one sixth of the images would
fall below the minimum score; m = 2 implies
that 1 out of 50 images would be below the
threshold; with m = 3 it would be around 1 in a
1000. For example, with Mmin = 60 and m = 2,
for JPEG XL an encoder setting could be used
that will result in an average MCOS score of 70
(or even slightly lower), since σ < 5 for such
a setting. For AVIF or WebP, an encoder setting
would have to be used that results in a higher
average MCOS score (about 73).

Traditionally, encoder assessment results are
often presented as bitrate-distortion curves where
the various codecs are aligned on bitrate. This
obfuscates the aspect of encoder consistency and

hides the practical need for a safety margin in the
encoder settings.

Results by image category
Figure 11 shows plots of the median MCOS

aggregated separately for each of the 15 im-
age categories. There are some notable differ-
ences between the categories: e.g. in the two
non-photographic categories (‘diagram-chart’ and
‘illustration-logo-text’), AVIF is clearly outper-
forming the other codecs, while in categories like
‘landscape-nature’ and ‘materials-clothes’, AVIF
is not performing better than MozJPEG.

Within each category, the relative performance
of the various encoders is generally similar,
though there is still image-dependent variation.
By means of example, Figure 12 shows the per-
image results for the ten images in the ‘portrait’
category. In these plots, the anchor images are
marked with a star.

OBJECTIVE METRICS
Generally the purpose of objective metrics

is to predict subjective quality scores in order
to easily and quickly assess image quality —
algorithmically rather than involving human test
subjects. They can be a valuable tool during
encoder development, or even be used internally
by an encoder to guide encoder choices. Objective
metrics are only useful to the extent that they
indeed correlate well with subjective results. The
following objective metrics were computed:

• PSNR, as implemented in ImageMagick 6.9.11
(compare -metric psnr, clamped to 60)
https://imagemagick.org

• VMAF [17], SSIM [6], MS-SSIM [18], PSNR-
Y, PSNR-HVS [19], CIEDE2000 [20]:
as implemented in libvmaf v2.3.0
https://github.com/Netflix/vmaf

• Butteraugli, SSIMULACRA (1 and 2): as im-
plemented in libjxl 0.8
https://github.com/libjxl/libjxl

• LPIPS v0.1.4 [21]
https://richzhang.github.io/PerceptualSimilarity

• DSSIM v3.2.0
https://github.com/kornelski/dssim

• FSIM v0.3.5 [22], [23]
https://github.com/up42/image-similarity-measures

Table 3 lists the Kendall rank-order, Spear-
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Figure 11. Median performance of selected encoders, per category.
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Figure 12. Per-image performance of selected encoders, for the specific category of portrait photos.

19



Table 3. Metric correlation with CID22 MCOS.
Metric KRCC SRCC PCC
(SSIMULACRA 2) 0.6934 0.882 0.8601
Butteraugli 2-norm -0.6575 -0.8455 -0.8089
Butteraugli 3-norm -0.6547 -0.8387 -0.7903
DSSIM -0.6428 -0.8399 -0.7813
VMAF 0.6176 0.8163 0.7799
FSIM 0.6089 0.8005 0.7676
PSNR-HVS 0.6076 0.8100 0.7559
Butteraugli max-norm -0.5843 -0.7738 -0.7074
SSIM 0.5628 0.7577 0.7005
MS-SSIM 0.5596 0.7551 0.7035
LPIPS -0.5417 -0.7316 -0.6932
SSIMULACRA 1 -0.5255 -0.7175 -0.6940
PSNR-Y 0.4452 0.6246 0.5901
PSNR (ImageMagick) 0.3472 0.5002 0.4817
CIEDE2000 0.3154 0.4584 0.4096

Table 4. Metric scores for KonJND-1k (mean ± stdev).
Metric BPG images JPEG images
PSNR-Y 39.61 ± 2.98 36.70 ± 3.79
PSNR-HVS 40.31 ± 1.78 39.96 ± 1.79
SSIM (×100) 98.55 ± 0.76 98.54 ± 0.81
MS-SSIM (×100) 99.21 ± 0.40 99.22 ± 0.38
VMAF 90.05 ± 2.25 91.56 ± 1.90
SSIMULACRA 2 65.38 ± 5.10 63.10 ± 4.65
DSSIM (×1000) 3.357 ± 1.267 3.817 ± 1.297
Butteraugli 3-norm 1.528 ± 0.192 1.699 ± 0.229
PSNR (ImageMagick) 35.17 ± 2.69 32.70 ± 3.32

man rank-order and Pearson correlation coeffi-
cients between the CID22 dataset MCOS scores
(not including the reference images) and these
metrics. SSIMULACRA 2 was tuned using (part
of) the CID22 dataset, so these results are
likely overestimating its performance. Amongst
the other metrics, the best-performing ones are
indicated in bold.

Alignment to other datasets
The KonJND-1k database [10] provides a

calibration point to help compare the various
objective metrics and subjective IQA datasets.
Metric scores can be computed for the distorted
images at the (mean) PJND threshold. Table 4
lists the mean metric scores for the two subsets
(the overall mean is the average of the two
numbers,; the two subsets have the same size).

Figure 13 visualizes the correlations between
a selection of objective metrics and the MCOS
scores of CID22 (excluding the reference im-
ages), using two-dimensional histograms. The
horizontal axis corresponds to the subjective
scores, the vertical axis to the metric value, and
the color indicates the number of images. The re-
gion shaded in purple corresponds to the range of

Table 5. Approximate alignment of quality scales.
medium high visually

Dataset / metric quality quality lossless
CID22 (MCOS) 50 65 90
TID2013 (MOS) 4.5 5.5 6
KADID10k (DMOS) 3.7 4.3 4.5
KonFiG-IQA (F-JND) 1.5 0.7 0
AIC-3 (JND) 3 1.7 0
KonJND-1k (PJND) 1
PSNR-HVS 35 40 50
MS-SSIM (×100) 98 99.2 99.8
VMAF 83 91 96
DSSIM (×1000) 8 3.5 1
Butteraugli 3-norm 2.5 1.6 0.5
SSIMULACRA 2 50 65 90

metric scores within one standard deviation of the
mean in the KonJND-1k dataset (the purple line
indicates the mean metric score corresponding to
the PJND). The black curve indicates the mean
MCOS score for a given metric score; the dashed
black lines indicate the 25th and 75th percentiles,
the dotted black lines indicate the 5th and 95th
percentiles. The horizontal spread between these
lines indicates the variation in subjective scores
for a given metric score; a smaller spread makes
a metric more reliable.

For comparison, in Figures 14, and 15, a
similar visualization is provided for the TID2013
[7] and KADID10k [8] datasets. Note that both
the amplitude and the type of distortions are
quite different in these datasets: they include
low and very low quality images, and mostly
artificial distortions like applying blur or noise.
They both only include JPEG and JPEG 2000
compression artifacts, no other encoders. Fig-
ure 16 shows plots for the KonFiG-IQA dataset
[12], specifically for the data from Experiment I
with F boosting (flicker). Figure 17 shows plots
for the AIC-3 CTC [16] dataset, including only
the subjective data (not the estimated data) and
excluding the atypical image number 4. Based
on the best-correlating metrics, the quality scales
from these datasets can be approximately aligned
as indicated in Table 5.

Pairwise correlation
For some use cases, metrics do not need to

accurately predict absolute MOS scores consis-
tently across images originating from different
reference images, but it is sufficient to predict
the result of pairwise comparisons of images
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Figure 13. Correlation between objective metrics and the CID22 dataset.
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Figure 14. Correlation between objective metrics and the TID2013 dataset.
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Figure 15. Correlation between objective metrics and the KADID10k dataset.
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Figure 16. Correlation between objective metrics and the KonFiG-IQA dataset.
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Figure 17. Correlation between objective metrics and the AIC-3 CTC dataset (excluding image number 4)
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Table 6. Metric correlation with MCOS differences.
Metric KRCC SRCC PCC
(SSIMULACRA 2) 0.7536 0.9210 0.9085
DSSIM -0.7203 -0.9019 -0.8352
SSIMULACRA 1 -0.7059 -0.8915 -0.8399
Butteraugli 2-norm -0.6852 -0.8688 -0.8422
FSIM 0.6828 0.8656 0.8411
Butteraugli 3-norm -0.6787 -0.8610 -0.8252
LPIPS -0.6711 -0.8612 -0.7901
CIEDE2000 0.6576 0.8482 0.7690
SSIM 0.6487 0.8426 0.7703
PSNR-HVS 0.6440 0.8365 0.7992
PSNR-Y 0.6264 0.8259 0.7888
PSNR (ImageMagick) 0.6214 0.8197 0.7745
MS-SSIM 0.6039 0.7967 0.7367
VMAF 0.6018 0.7894 0.7784
Butteraugli max-norm -0.5877 -0.7773 -0.7351

originating from the same reference image, i.e.,
MOS differences. For example when assessing
a potential encoder change, typically the aim is
to improve the visual quality when keeping the
bitrate constant. We can compute the correlation
between the differences in scores (MCOS(A) −
MCOS(B)) and the differences in metric results
(metric(R,A) − metric(R,B), for all triplets
(R,A,B) which were evaluated in the TSBPC
experiment (this excludes ‘trivial’ pairs). Table 6
lists these correlations.

Predicting pairwise comparisons (between
two distorted images derived from the same ref-
erence image) is generally an easier task for an
objective metric than predicting absolute quality
in a way that is consistent between images derived
from different reference images. For almost all
metrics, the correlations in Table 6 are higher
than those in Table 3. A notable exception is
VMAF, which seems to be (slightly) better at
absolute quality assessment than at predicting
pairwise comparisons. Tables 3 and 6 are sorted
from highest correlations (best metrics) to low-
est correlations (worst metrics). There are large
differences between these two metric rankings:
e.g. SSIMULACRA 1 performs rather poorly at
absolute quality assessment but is one of the best
metrics for relative quality assessment, while with
VMAF it is the other way around. Interestingly,
PSNR performs rather well at predicting rela-
tive opinions, outperforming some of the more
advanced metrics like MS-SSIM and VMAF.
For absolute quality assessment however, PSNR
shows only a very weak correlation.

Figure 18 shows 2D histograms of differences

in MCOS (horizontally) compared to differences
in metric score (vertically). The area between the
two horizontal blue lines contains half of the pairs
where the metric difference is small, the area
between the two vertical blue lines contains half
of the pairs where the MCOS difference is small.
In the areas on the bottom left and top right, the
metric correctly predicts the pairwise preference.
In the areas on the top left and bottom right, the
metric is wrong. The central area contains pairs
where both the metric difference and the MCOS
difference is small, so arguably the metric is cor-
rect (even if it has the sign wrong). The remaining
areas are cases where the MCOS difference is
large but the metric difference is small, or the
other way around. The percentages of pairs in
each of these regions are indicated.

SSIMULACRA 2
SSIMULACRA 2 is a new objective metric

for image quality assessment, developed based
on the CID22 dataset. It is technically not a
distance metric since it does not respect sym-
metry: in general, SSIMULACRA2(a, b) ̸=
SSIMULACRA2(b, a). In particular, if the dis-
torted image is smooth in a region where the
original image has edges, this can get penalized
differently than if the distorted image has edges
in a region where the original image is smooth,
i.e. smoothing artifacts are weighted differently
than ringing, banding or blockiness artifacts.

The metric is based on multiscale SSIM [18].
The computation is done in the XYB color space,
while the downsampling between scales is done
in linear RGB. SSIM error maps are computed at
six scales (1:1 to 1:32) for each component. Two
additional error maps are computed in order to
explicitly model ringing and smoothing artifacts.
For each of the resulting 6 × 3 × 3 error maps,
two aggregation methods are used (L1 and L4

norms). The final score is based on a weighted
sum of the resulting 108 sub-scores, where the
weights were optimized to correlate with a subset
of the CID22 dataset, corresponding to 201 out
of the 250 reference images. It was validated
on the images derived from the remaining 49
reference images (which were not used in the
weight tuning). For this validation set, the KRCC
is 0.7033, SRCC is 0.88541, PCC is 0.87448 and
the mean absolute error is 4.97.
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Figure 18. Correlation between objective metrics and pairwise comparisons.
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Although no other IQA datasets were used in
the weight tuning, SSIMULACRA 2 also corre-
lates well with other datasets.

An open-source software implementation of
the SSIMULACRA 2 metric is available1. It is
also part of the benchmark tools available at the
JPEG XL reference software repository.

Recommended application ranges
Correlation coefficients give a good indication

of the overall performance of a metric, but the
2D histograms in Figures 13 to 17 provide more
detailed information. For example, there can be an
asymmetry between ‘false positives’ (the metric
predicting a high quality while the subjective
score is low) and ‘false negatives’ (the metric
predicting a low quality while the subjective score
is high). Butteraugli suffers from false negatives
but avoids false positives, while MS-SSIM suffers
from false positives and avoids false negatives.
It may be application-dependent which of these
asymmetries is preferred.

Metrics also perform differently in different
regions of the quality spectrum. Some metrics
are designed to be used specifically for high
fidelity still image compression (e.g., Butteraugli)
while others are designed for lower quality ranges
and are mostly used to evaluate video compres-
sion (e.g. VMAF, PSNR-Y, SSIM). In order to
improve our understanding of when to ‘trust’
which objective metrics, we can summarize the
2D histograms in a way that allows comparing
the various metrics directly. The plots in Figures
19 and 20 were created as follows. For each
metric, we sorted all of the distorted images in
the dataset by metric score, and then for each
bucket of about 1000 images with a similar metric
score, the median and standard deviation of the
subjective scores is computed. These points are
then connected linearly in order of increasing
metric score.

When the resulting curves are nonmonotonic
or otherwise erratic, this can indicate either poor
correlation between the metric and the subjective
scores, or noise in the dataset. Higher curves
indicate a lower standard deviation, so better
consistency of the metric in that quality range.
Table 7 indicates recommended quality ranges

1Repository: https://github.com/cloudinary/ssimulacra2
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Figure 20. Metric consistency w.r.t KADID10k

for each metric. This table can be used to select a
suitable objective metric for a given application.
For example, if the range of qualities to be
covered is very broad, DSSIM is a good choice,
while if the range is more narrow around visually
lossless quality, Butteraugli is a good choice. For
medium quality or better, SSIMULACRA 2 is a
good choice. For very low to medium quality,
MS-SSIM is a good choice.
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Table 7. Recommended quality ranges for various objective metrics.
very low low medium high very high quality visually lossless

CID22 MCOS 25 50 65 80 90
KADID10k DMOS 2 3 3.7 4.3 4.4 4.5
PSNR-Y very poor very poor very poor very poor very poor very poor
PSNR-HVS poor mediocre good mediocre good good
SSIM good mediocre good mediocre poor poor
MS-SSIM very good good good mediocre poor poor
VMAF good mediocre good good mediocre mediocre
SSIMULACRA 2 mediocre good very good very good very good very good
DSSIM good very good very good good good good
Butteraugli 3-norm very poor poor mediocre good very good very good
PSNR (ImageMagick) very poor very poor very poor very poor very poor poor

CONCLUSION
We described a new subjective image quality

assessment methodology based on a combination
of two experiment protocols suitable for crowd-
sourcing: Triple Stimulus Boosted Pairwise Com-
parison (TSBPC) and Double Stimulus Boosted
Quality Scale (DSBQS). We discussed our experi-
ment setup, participant screening procedures, bias
correction, and an analysis method to combine the
scores obtained using both protocols. This led to
the CID22 dataset, a large dataset of over 22,153
images, which was annotated in 2022 with accu-
rate subjective quality scores based on 1.4 million
human opinions. Compared to other datasets, it is
both larger and more focused, covering specifi-
cally distortions caused by image compression in
the range from medium quality to visually loss-
less. Using the CID22 dataset, we investigated the
compression performance and visual consistency
of different image encoders. We evaluated various
objective metrics in terms of their correlation with
the subjective scores, both in terms of absolute
quality assessment (correlation with MCOS) and
in terms of relative quality assessment (correla-
tion with MCOS differences). We introduced a
new metric (SSIMULACRA 2), and formulated
recommendations on the application range of this
and other metrics.
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