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Abstract—We propose a new methodology for large-scale subjective quality
assessment of compressed still images in the high fidelity range. Combining two
different assessment protocols, one based on pairwise comparisons, the other on
absolute opinions, it is designed to assess this range of qualities not well-covered
by previous methodologies. The methodology was applied to create the Cloudinary
Image Dataset ’22 (CID22), consisting of 22,153 annotated images (with scores
based on 1.4 million opinions), originating from 250 pristine images compressed
using JPEG, JPEG 2000, JPEG XL, HEIC, WebP, and AVIF at high fidelity settings.
Using this data, we evaluate various image encoders and objective metrics.

B etter display and camera technology, in-
creased storage capacity, broadband Internet,
and advances in image coding caused high

fidelity images to become increasingly feasible, de-
sirable and widespread. However, quality assessment
standards like ITU-R Rec. BT.500 [1] and AIC-1 [2]
are not suitable for the range between high quality
and visually lossless, as quality scores obtained in
this way saturate at relatively low fidelity. AIC-2 [3]
approaches the problem from the other end: based on
a very sensitive flicker test catching even the slightest
visual distortion, it leads to binary results: an image
is either visually lossless or not. For somewhat lower
fidelity targets, this test is not suitable. In this context,
the JPEG Committee launched a new activity to create
a new standard for subjective and objective image
quality assessment (IQA), known as AIC-3, which is
sensitive and discriminative in the currently uncovered
range from high quality to near visually lossless.

We propose a subjective IQA methodology based
on a combination of two protocols, which enables
large-scale IQA within a reasonable budget and time
frame. We present the Cloudinary Image Dataset
(CID22), a set of 22,153 quality-annotated images,
originating from 250 pristine images. We describe the
dataset construction and analysis to combine results
of both experiment types. Next, we evaluate image
encoders in terms of compression (bitrate-distortion)
and visual consistency of encoder settings; we believe
the latter has not been investigated before. Finally we
evaluate correlation of objective metrics with subjective

results, and propose a new metric called SSIMU-
LACRA 2.

RELATED WORK
Compared to lab-based IQA datasets, CID22 is rather
large: for example, the LIVE IQA database [4] has 29
pristine and 779 distorted images, and TID2013 [5]
has 25 pristine and 3000 distorted images. Crowd-
sourced IQA datasets like KADID10k [6] (81 pristine,
10,125 distorted) and the PieApp dataset [7] (200 pris-
tine, 20,280 distorted) are larger. The main difference
between CID22 and these existing datasets is the
types and amplitudes of distortions: CID22 covers only
image compression and a specific range of qualities
(medium quality to near visually lossless), as opposed
to the wider range of distortions and qualities contained
in existing datasets. For example, in KADID10k and
TID2013, only 2 out of 25 distortion types correspond
to image compression (JPEG and JPEG 2000), and
only 2 or 3 distortion levels are within the quality
range that would be typically used for still images (the
remaining distortion levels are too strong). Therefore
CID22 is possibly less relevant than existing datasets
for research into the human visual system and subjec-
tive quality perception in general, but more relevant for
practical image compression applications.

The KonJND-1k database [8] contains many pris-
tine images (1008), compressed with JPEG and BPG.
It provides data on the picturewise just noticeable dif-
ference, i.e. the distortion threshold where an average
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observer notices artifacts. While relevant for practical
image compression, it does not allow comparing differ-
ent codecs (every pristine image was only compressed
with one codec) and only provides information on one
specific quality point, rather than a range of qualities.

IQA protocols
Various image quality assessment protocols described
in AIC-1 [2] and AIC-2 [3] are reviewed in [9]. Sin-
gle stimulus approaches like ACR and ACR-HR are
suitable for assessing the appeal of a distorted image,
but not fidelity, since test subjects cannot compare to
a reference image. The DSCQS and DSCS protocols
[1], even though they are double stimulus approaches,
are also more suited for assessing appeal rather than
fidelity: participants do not know which stimulus is
the ‘correct’ reference image, so it is possible that a
distorted image gets a score ‘better than the original’.
This typically happens when the reference image is
noisy or grainy, and compression artifacts act like
a denoising filter. The DSIS protocol is suitable for
assessing fidelity, but since stimuli are presented side-
by-side, it is not discriminative in the high fidelity range.
Comparing two very similar images side-by-side is,
after all, a hard task. There is even a genre of puzzles
(“spot the 7 differences”) devoted to specifically this
task. Hence it is not surprising that when using the
DSIS protocol, MOS confidence intervals overlap with
those of the reference image at relatively low bitrates.

In-place comparison (as opposed to side-by-side)
makes it easier to spot differences. An extreme ex-
ample is the AIC-2 flicker test. While useful to assess
whether a codec achieves visually lossless compres-
sion, it is not discriminative in the range below visually
lossless.

By amplifying the visibility of distortions, boosted
triplet comparison [10] improves the discriminative
power of pairwise comparisons (PC). By presenting
three stimuli (reference and two distorted images),
it assesses fidelity, unlike double stimulus PC pro-
tocols which effectively assess only appeal. One of
our proposed protocols is a variant of boosted triplet
comparison.

Pairwise comparisons between distorted images
derived from the same reference image allow con-
structing a detailed ranking. The problem with this
approach is that it only leads to relative scores, i.e.
relative mean opinion scores (RMOS), where the low-
est ranked image gets score 0 and the highest ranked
image score 1. Such scores cannot meaningfully be
compared across images originating from different ref-
erence images.

Impairment scale methodologies like DSIS [1] use
an absolute scale, which can be compared across
different reference images. They do however require
collecting many opinions in order to obtain accurate
mean opinion scores (MOS). Even then, confidence
intervals tend to be too large to accurately rank dis-
torted images, especially when the number of images
to be tested is large or the range of qualities is relatively
narrow.

ASSESSMENT PROTOCOLS
We propose the following hybrid approach:

› pairwise comparisons (TSBPC) resulting in
RMOS scores, covering all distorted images;

› absolute grading (DSBQS) resulting in MOS
scores for a subset of the images (“anchors");

› remaining MOS scores are interpolated based
on RMOS scores and anchor MOS scores.

Triple Stimulus Boosted Pair Comparison
The TSBPC protocol consists of displaying three stim-
uli: a reference image R, distorted image A, and
distorted image B. The reference image is displayed on
the left side of the screen and participants know this is
the reference. On the right side of the screen, one dis-
torted image is displayed, and participants can freely
switch between image A and image B by pressing a
key or clicking a button; this toggles between the two
images, replacing them in-place and instantaneously.
Half of the participants see A first, the other half sees
B first. There is no time limit and no limit on how often
and how quickly the distorted images are switched.
Additionally, the images are displayed with upscaling in
order to fill the screen height minus the space needed
for the interface. After switching at least two times,
participants can submit a ternary response: “A is best",
“B is best", or “I can’t choose".

Boosting [10] is applied to obtain a maximally ac-
curate ranking: images are scaled up to ensure that
the physical dimensions are large enough also on
high density displays; the lack of switching restrictions
allows participants to perform “manual flickering". How-
ever, images are not altered to exaggerate pixel-wise
differences.

Double Stimulus Boosted Quality Scale
The DSBQS protocol is similar to DSIS [1] with
one major difference: instead of displaying reference
and distorted images side-by-side, only one image is
shown, and participants can freely switch between the
reference and distorted image. The interface marks
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which image (reference or distorted) is currently being
displayed. There is no time limit and no limit on how
often and how quickly images are switched. Images
are displayed at ’dpr1’ resolution: on normal-density
screens, one image pixel corresponds to one display
pixel (1:1); on high-density (‘retina’) screens, one im-
age pixel corresponds to 2x2 display pixels (2:1). In
other words, we use CSS pixels [11], which theoreti-
cally span a visual angle of 0.0213 degrees, though in
practice this is only an approximation. After switching at
least twice, participants submit a response on a semi-
continuous scale from 0 to 10, described as follows:

› 1: very low quality; very annoying artifacts
› 3: low quality; mildly annoying artifacts
› 5: medium quality; no annoying artifacts
› 7: high quality; no visible artifacts
› 9: very high quality; no visible difference at all.

Responses are registered by adjusting a slider
which is initially in the middle (5) and which can be
moved in increments of 0.5.

While ‘manual flickering’ is allowed, images are
displayed without additional upscaling (only adjusted
for display density), in order to make conditions more
consistent across participants and to limit visibility
of artifacts to a relevant level. Compared to the the
five-grade DSIS impairment scale, the quality scale
of DSBQS has more resolution in the high fidelity
range: DSIS scale 4 (“perceptible, but not annoying”)
corresponds to DSBQS scale 5. In this sense, both the
viewing conditions and quality scale are ‘boosted’.

EXPERIMENT SETUP
The goal was to create a large dataset of quality-
annotated images covering various types of image
content. Distortions of interest are compression arti-
facts, focusing on encoders relevant to web delivery
and a production environment.

Reference Images
All images are 512×512 pixels. Most are cropped and
downscaled high-resolution photos sourced from stock
photography service Pexels. Images are clustered
into 15 categories: animals (11 images), art-abstract-
decoration (16 images), building-monument (26 im-
ages), diagram-chart (13 images), food-drinks (26 im-
ages), illustration-logo-text (12 images), indoors-rooms
(25 images), landscape-nature(23 images), materials-
clothes (8 images), night-nightlife (18 images), people-
fashion (18 images), portrait (10 images), sky-clouds
(9 images), sports (17 images), and urban-industrial-
cars (18 images).

Distorted Images
The following codecs and encoders were used:

› JPEG: mozjpeg 4.1.0 (3 Mpx/s)
› JPEG 2000: Kakadu 8.2.2 (8 Mpx/s)
› JPEG XL: libjxl 0.6.1 (3 Mpx/s)
› HEIC: libheif / x265 2.8.0 (2 Mpx/s)
› WebP: libwebp 1.0.3 (6 Mpx/s)
› AVIF (aom s7): libaom 3.1.2 (2 Mpx/s)
› AVIF (aom s1): libaom 3.1.2 (0.1 Mpx/s)
› AVIF (aurora): wzav1 1.0.2 (1 Mpx/s)
› AVIF (aurora slow): wzav1 1.0.2 (0.3 Mpx/s)

For each encoder, 8 to 11 quality settings were
used, densily sampling the high fidelity range. For
example, for mozjpeg, we used -quality parameter
values 30, 40, 50, 60, 65, 70, 75, 80, 85, 90, 95. We
used fixed encoder settings (as opposed to fixed bit
rates) to match typical usage patterns and to assess
encoder consistency.

Modern encoders can typically be configured to
reach different trade-offs between speed and com-
pression. We mostly used default configurations. Ap-
proximate encode speed in megapixels per second is
indicated in the list above (single-threaded, Intel Core
i7-9750H). For the slower AVIF encoder configurations
(aom s1, aurora slow) only partial data was collected.

Selection of Stimuli
For the TSBPC experiment, we conceptually consid-
ered all triplets of the form (R, A, B) where both A and
B are derived from reference image R, and eliminated
‘trivial’ triplets based on bits per pixel and prior as-
sumptions about codec performance. For example, a
0.5 bpp JPEG image versus a 1.5 bpp AVIF image
was considered a trivial comparison (likely the AVIF
would be better), while a 0.5 bpp AVIF versus a 1.5 bpp
JPEG image was not considered trivial. This filtering
step helps to avoid collecting opinions expected to
bring little information. From the remaining triplets,
we randomly sampled 105,155 triplets. We aimed to
collect 10 opinions per triplet.

For the DSBQS experiment, we used 10 distorted
anchor images per reference image plus the refer-
ence image itself (presented as a distorted image).
The following encoder settings were used as anchors:
mozjpeg q30, q50, q70, q90; libjxl q30, q60, q85;
avif aurora quantizer settings 37, 32, 28. For each
of the 2750 stimuli, we aimed to collect at least 100
opinions. Each test session started with 4 training
images, exposing participants to examples of very low
and very high quality before the actual test started.

In both experiments, test sessions consist of 30
questions plus 2 additional ’honeypot’ questions, in-
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serted randomly and used for verification. For TSBPC,
these were ‘obvious’ comparisons (A is clearly best)
where a wrong answer (B is best, or “I cannot choose”)
would cause the session to be discarded. For DSBQS,
these were one near-lossless image (where a score
below 5 led to disqualification) and one very poor
image (where a score above 5 led to disqualification).
Participants could engage in up to 4 sessions, with
a 24-hour break between sessions to prevent fatigue.
They were instructed to use a desktop or laptop. This
was checked during recruitment.

PARTICIPANT SCREENING
The crowd-sourcing platform Subjectify was used to
conduct the experiment in the first half of 2022. Ex-
cluding participants who failed the initial ‘honeypot’
screening, 1,071,300 TSBPC opinions were collected
in 35,710 test sessions and 334,920 DSBQS opinions
in 11,164 sessions.

Inevitably, in crowd-sourced experiments some par-
ticipants provide poor responses. To reduce the noise
introduced by such responses, additional screening
was applied. In the DSBQS experiment, sessions were
discarded when one or more of these conditions were
true: 1) a reference image received a score below
5; 2) more than 20 percent of the responses of the
session was exactly the score of 5, which corresponds
to the initial position of the slider; 3) the participant had
switched to a mobile device (phone or tablet), despite
the instruction to use a desktop or laptop. This extra
screening reduced the average number of opinions per
anchor image from 122 to 101.

Outlier detection
Outliers (participants answering randomly or care-
lessly) were detected in the TSBPC experiment based
on average agreement with other participants on all
triplets evaluated in a session. In total, 5257 sessions
(14.7% of TSBPC sessions) were discarded.

In the DSBQS experiment, outlier participants who
frequently disagreed with the general opinion were
detected as follows. For each submitted score S, the
difference between S and the average score A for that
stimulus was divided by the standard deviation in the
set of all scores for that stimulus in order to compute a
normalized difference (how many standard deviations
removed from the mean). If the mean of the normalized
differences in a session was greater than 1 or less than
-1 (indicating very biased scoring), or if the standard
deviation of the absolute normalized differences was
greater than 1 (indicating random or very polarized

scoring), then the session was discarded. Finally, the
first three scores of each session were also discarded.

After outlier removal, in the TSBPC experiment,
every distorted image was on average compared to
9 other images, with 8.7 opinions per comparison. In
the DSBQS experiment, 43 to 94 opinions remained
per image (mean: 63.6).

Bias Correction
In DSBQS, every image is scored by different partici-
pants, each with their own interpretation of the quality
scale. We applied bias correction, adjusting scores by
shifting all scores of a session by an additive constant,
chosen per session to reduce the mean normalized
difference to zero. Adjusted scores are clamped to
[0, 10]. For example, scores would be adjusted up-
wards for a ‘pessimistic’ participant who systematically
rated images lower than the (tentative) MOS.

SCORE ANALYSIS
After bias correction, the mean corrected opinion score
(MCOS) was calculated for each anchor image as
ten times the average bias-corrected score. Resulting
values are on a scale from 0 to 100. Reference image
scores are between 82.5 and 92.6 (mean: 88.3).

RMOS Computation
The TSBPC experiment has an incomplete and imbal-
anced design by necessity, since the number of stimuli
(let alone the number of pairs) is much larger than the
number of comparisons per participant. To compute
relative mean opinion scores (RMOS), we used the
Elo rating system, independently per reference image.
All distorted images derived from a particular reference
are treated as players in a tournament. Opinions of the
form A > B count as two wins of A against B; “I can’t
choose” counts as one win for each. To stabilize the
computation, we add 10% of a tie (0.1 win for each)
between all pairs A ̸= B. Converged Elo ratings are
then computed, i.e. the limit of the Elo ratings as the
number of games played goes to infinity. These ratings
are normalized to [0, 1] to obtain RMOS scores, so 0
corresponds to the image with the lowest Elo rating
(typically q30 JPEG) and 1 to the highest rated image
(typically q95 JPEG or JPEG XL).

Monotonicity constraint Besides actual pairwise opin-
ions, additional information is taken into consideration
in the Elo computation. While in principle (due to bugs
or strange phenomena) encoders can behave non-
monotonically, we assumed that all tested encoders do
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in fact behave monotonically. A compressed image with
a larger file size (higher quality setting) is assumed to
be at least as good as an image with a smaller file size
encoded with the exact same encoder (at the same
speed setting). Without this monotonicity constraint,
e.g. a q40 JPEG can get a lower score than a q30
JPEG due to incomplete sampling. We add dummy
opinions to enforce monotonicity.

MCOS disagreement mitigation Finally, for pairs of
anchor images, additional dummy opinions are added.
If the 90% MCOS confidence intervals of both images
do not overlap, then the image with the higher MCOS
score is considered to be better a number of times
proportional to the gap between confidence intervals.
If confidence intervals overlap, dummy A = B opinions
are added proportional to the amount of overlap and
A > B opinions proportional to the amount of non-
overlap.

Interpolating and extrapolating MCOS
MCOS scores of anchor images are then used to
linearly interpolate MCOS scores for the other images
using RMOS scores. There is one caveat: there are
still (rare) cases where RMOS scores and anchor
MCOS scores disagree on the order of a pair. If
MCOS(A) > MCOS(B) while RMOS(A) < RMOS(B),
then the MCOS scores of A and B are slightly adjusted
by moving the score of A from the mean opinion
towards the 20th percentile and the score of B towards
the 80th percentile until the disagreement is resolved.
There were 39 such cases; a typical example is a high-
bitrate AVIF anchor with slightly lower MCOS score
than a lower-bitrate AVIF anchor.

At the extremes, we extrapolate as follows. The
maximum RMOS score 1 is assumed to correspond
to the MCOS score of the reference image. While the
reference image was not compared in TSBPC, it is a
reasonable assumption that the least distorted stimulus
is indistinguishable from the reference. In fact, the q90
JPEG anchor has an average MCOS of 86.7, which is
close already to the average reference MCOS (88.3).
Several encoder settings (e.g. q95 JPEG) achieve
better RMOS scores than this, so it can be expected
that the image with the highest RMOS score is visually
lossless. So arguably, no actual extrapolation is done
at this end. In case a distorted anchor obtained a
higher MCOS score than the corresponding reference,
both scores are adjusted as described above, moving
scores towards the 20th and 80th percentile, respec-
tively. There were 33 such cases of which 28 were a
q90 JPEG with a higher MCOS than the reference.

About 5% of the anchor scores were adjusted in
this way to resolve remaining rank-order disagree-
ments and to ensure that no distorted image scores
higher than the reference. The amplitude of changes
was small: the largest difference is 2.59 MCOS points,
the average absolute change amongst adjusted scores
was 0.72 MCOS points (and 95% of the anchor scores
were not adjusted).

RMOS score 0 corresponds to an anchor in 97% of
the cases. For 8 images, we extrapolated by arbitrarily
assuming the lowest RMOS score to correspond to
0.75 times the mean plus 0.25 times the 20th per-
centile opinion for the worst anchor image, assigning
extrapolated scores at most 4 MCOS points below the
worst anchor score.

Final MCOS scores
The bulk (91.7%) of the images in the CID22 dataset
have MCOS ≥ 50, i.e. “medium quality” or better.
Figure 1 shows the distribution of scores. Most images
range from medium-high quality (MCOS 60) to visually
lossless (MCOS around 88). All tested encoders are
represented well acrosss this range.

Preservation of TSBPC preferences Table 1 shows
the effect of the monotonicity constraint and the DS-
BQS disagreement mitigation on the agreement be-
tween raw TSBPC comparison results and the scores.
We define ∆PC as the difference between the number
of A > B opinions and B > A opinions; the higher this
number, the clearer the consensus. For example, if 7
participants said A > B and 3 participants said A < B,
then ∆PC is 7 − 3 = 4. Scores agree with TSBPC if
the preferred image has a higher score.

Converting TSBPC results to RMOS, even when
using raw TSBPC data without any mitigations, does
not lead to perfect agreement. Numerical scores in-
duce a total order, while TSBPC results include non-
transitive preferences and sampling error so do not
correspond to a preorder. Mitigations inevitably further
reduce agreement with raw TSBPC results. Still, even
with both mitigations, MCOS scores arguably agree
well with TSBPC, especially when consensus is clear.

Confidence Intervals Bootstrapping was applied: 200
iterations of resampling-with-replacement were done
on both sets of opinions (TSBPC and DSBQS, af-
ter participant screening and bias correction), re-
calculating MCOS scores, Elo rankings and MCOS
interpolation in every iteration. The mean width of the
90% confidence intervals is 4.457.
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FIGURE 1. Distribution of MCOS scores in the CID22 dataset, by encoder.
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FIGURE 2. Median and 5th percentile (worst-case) performance of selected encoders.
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TABLE 1. Agreement between scores and TSBPC.

mitigations applied mean
∆PC none monoton. both ∆MCOS pairs

1 64.6% 54.1% 56.3% 1.98 12997
2 76.7% 67.4% 66.4% 3.76 11957
3 86.9% 79.6% 75.3% 5.76 11168
4 93.5% 87.8% 82.6% 7.76 11026
5 96.8% 93.5% 88.9% 10.08 11388
6 98.7% 96.6% 93.5% 12.59 11225
7 99.4% 98.6% 96.0% 14.83 10169
8 99.9% 99.4% 97.6% 17.11 8500
9 100.0% 99.8% 98.6% 19.26 5884
10 100.0% 99.8% 99.4% 21.19 3241
11 100.0% 100.0% 99.1% 20.60 454
12 100.0% 100.0% 100.0% 19.38 119

ENCODER RESULTS
Figure 2 shows the performance of four encoders
relevant for web delivery. To aggregate results over
multiple images, we consider average bpp and me-
dian MCOS score per encoder setting. This aggre-
gation hides image-dependent variation in the quality
obtained using a given encoder setting, as seen in
the box plots indicating spread. Obviously bpp is also
image-dependent; averages do however indicate total
compressed corpus size.

Encoder settings are often chosen using a “set it
and forget it” approach: a fixed setting is used for many
images. What matters is not the median result, but that
(almost) all images reach a minimum fidelity. In other
words, worst-case performance is what matters. For
this reason, Figure 2 also shows 5th percentile scores.

Encoder consistency
Consistency is a desirable encoder feature as it re-
duces the likelihood of ‘surprising’ results — in partic-
ular, compressed images with noticeably worse quality
than most other images encoded with the same set-
ting. To investigate encoder consistency, we compute
the standard deviation of MCOS scores per encoder
setting (see Figure 3).

For all encoders, high quality settings produce con-
sistent results; as MCOS scores approach the highest
possible value (visually lossless), variance naturally
diminishes. At lower quality settings, consistency de-
creases for all encoders, but there are differences:
JPEG XL is more consistent than AVIF and WebP.

Traditionally, encoder assessment results are of-
ten presented as bitrate-distortion curves where the
codecs are aligned on bitrate. This obfuscates the
aspect of encoder consistency and the practical need
for a safety margin in encoder settings.
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FIGURE 3. Visual consistency of encoder settings, as in-
dicated by standard deviation of MCOS scores. Note: the
vertical axis is flipped, so higher is better (more consistent,
lower standard deviation).

Results by image category
Figure 4 shows MCOS plots aggregated per category.
There are notable differences between categories: e.g.
in the non-photographic categories (diagram-chart and
illustration-logo-text), AVIF outperforms other codecs,
while for landscape-nature and materials-clothes, it
does not perform well.

Within each category, relative performance of the
various encoders is generally similar, though there is
still image-dependent variation. By means of example,
Figure 5 shows per-image results for the portrait cate-
gory. In these plots, anchors are marked with stars.
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all 10 images in category: portrait

0.
17

0.
19

0.
21

0.
23

0.
25

0.
28

0.
31

0.
35

0.
39

0.
43

0.
48

0.
53

0.
59

0.
66

0.
73

0.
81

0.
90

1.
00

1.
11

1.
23

1.
37

1.
52

1.
69

1.
88

2.
09

Average bits per pixel

30

40

50

60

70

80

90

M
ed

ia
n 

M
CO

S 
(p

10
 - 

p2
5 

- p
75

 - 
p9

0)

all 9 images in category: sky-clouds
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FIGURE 4. Median performance of selected encoders, per category.
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FIGURE 5. Per-image performance of selected encoders, for the specific category of portrait photos.
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TABLE 2. Objective metric correlation with CID22 MCOS.

correlation with MCOS corr. with MCOS differences
(absolute quality) (relative quality)

Metric KRCC SRCC PCC KRCC SRCC PCC

(SSIMULACRA 2) a 0.6934 0.882 0.8601 0.7536 0.9210 0.9085
Butteraugli 2-norm a -0.6575 -0.8455 -0.8089 -0.6852 -0.8688 -0.8422
Butteraugli 3-norm a -0.6547 -0.8387 -0.7903 -0.6787 -0.8610 -0.8252
DSSIM (v3.2) -0.6428 -0.8399 -0.7813 -0.7203 -0.9019 -0.8352
VMAF [12] b 0.6176 0.8163 0.7799 0.6018 0.7894 0.7784
FSIM (v0.3.5) [13] 0.6089 0.8005 0.7676 0.6828 0.8656 0.8411
PSNR-HVS b 0.6076 0.8100 0.7559 0.6440 0.8365 0.7992
Butteraugli max-norm a -0.5843 -0.7738 -0.7074 -0.5877 -0.7773 -0.7351
SSIM [4] b 0.5628 0.7577 0.7005 0.6487 0.8426 0.7703
MS-SSIM [14] b 0.5596 0.7551 0.7035 0.6039 0.7967 0.7367
LPIPS (v0.1.4) [15] -0.5417 -0.7316 -0.6932 -0.6711 -0.8612 -0.7901
SSIMULACRA 1 a -0.5255 -0.7175 -0.6940 -0.7059 -0.8915 -0.8399
PSNR-Y b 0.4452 0.6246 0.5901 0.6264 0.8259 0.7888
PSNR (ImageMagick 6.9.11) 0.3472 0.5002 0.4817 0.6214 0.8197 0.7745
CIEDE2000 b 0.3154 0.4584 0.4096 0.6576 0.8482 0.7690

a Butteraugli, SSIMULACRA 1 and 2: as implemented in libjxl v0.8
b VMAF, PSNR-HVS, SSIM, MS-SSIM, PSNR-Y, CIEDE2000: as implemented in libvmaf v2.3.0

OBJECTIVE METRICS
Objective metrics assess image quality algorithmically
rather than involving human test subjects. They are
useful to the extent that they correlate with subjective
results. Table 2 lists Kendall and Spearman rank-order
and Pearson correlation coefficients between MCOS
scores (excluding references) and various metrics.

Alignment to other datasets
Figure 6 visualizes correlations for a selection of ob-
jective metrics using 2D histograms. Horizontal axes
correspond to subjective scores, vertical axes to metric
values, and color indicates the number of images.
Purple lines indicate the mean metric score of PJND
images in KonJND-1k [8]; the purple shaded region in-
dicates one standard deviation around the mean. Black
curves indicate the mean MCOS for a given metric
score; dashed and dotted lines indicate 25th/75th and
5th/95th percentiles, respectively. Horizontal spread
between these lines shows variation in subjective
scores for a given metric score. For comparison, Fig-
ure 7 shows a similar visualization for the KADID10k
[6] dataset. Quality scales from this and other datasets
can be approximately aligned as indicated in Table 3.

Pairwise correlation
For some use cases, absolute scores are not needed
and it suffices to compare images originating from
the same reference. For example, potential encoder
changes typically aim to improve quality while keeping

TABLE 3. Approximate alignment of quality scales.

medium high visually
Dataset / metric quality quality lossless

CID22 (MCOS) 50 65 90
TID2013 (MOS) 4.5 5.5 6
KADID10k (DMOS) 3.7 4.3 4.5
KonJND-1k (PJND) 1
KonFiG-IQA (F-JND) 1.5 0.7 0
AIC-3 (JND) 3 1.7 0

PSNR-HVS 35 40 50
MS-SSIM 0.98 0.992 0.998
VMAF 83 91 96
DSSIM 0.008 0.003 0.001
Butteraugli 3-norm 2.5 1.6 0.5
SSIMULACRA 2 50 65 90

bitrate constant. Table 2 also lists correlations between
score differences MCOS(A)−MCOS(B) and metric dif-
ferences metric(R, A)−metric(R, B) for triplets (R, A, B)
of the TSBPC experiment.

Predicting pairwise comparisons is generally an
easier task for an objective metric than predicting abso-
lute quality consistently between images derived from
different reference images. For most metrics, pairwise
correlation is higher than absolute score correlation.
A notable exception is VMAF, which is (slightly) bet-
ter at absolute than at relative IQA. SSIMULACRA 1
performs rather poorly at absolute IQA but is one of
the best metrics for relative IQA. Interestingly, PSNR
outperforms MS-SSIM and VMAF at relative IQA. For
absolute IQA however, PSNR performs very poorly.
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FIGURE 6. Correlation between objective metrics and the CID22 dataset.
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SSIMULACRA 2
Based on the CID22 dataset, we developed a new
objective metric called SSIMULACRA 2, based on
multiscale SSIM [14]. The computation is done in XYB
color space, while the downsampling between scales
is done in linear RGB. SSIM error maps are computed
at six scales (1:1 to 1:32) for each component. Two
additional error maps are computed; they explicitly
model ringing and smoothing artifacts. For each of the
resulting 6×3×3 error maps, L1 and L4 norms are com-
puted. The final score is based on a weighted sum of
the resulting 108 sub-scores. Weights were optimized
to correlate with a subset of CID22 corresponding to
201 out of 250 references. For the remaining validation
set (49 references), KRCC is 0.7033, SRCC is 0.8854,
PCC is 0.8745 and mean absolute error is 4.97.

An open-source software implementation is avail-
able at github.com/cloudinary/ssimulacra2.

CONCLUSION
We described a new subjective image quality as-
sessment methodology based on a combination of
two experiment protocols suitable for crowd-sourcing:
Triple Stimulus Boosted Pair Comparison (TSBPC) and
Double Stimulus Boosted Quality Scale (DSBQS). We
discussed our experiment setup, participant screening
procedures, and a method to combine the scores
obtained using both protocols. This led to the CID22
dataset of over 22,153 images. Compared to other
datasets it is more focused, covering specifically distor-
tions caused by image compression in the range from
medium quality to visually lossless. Using this dataset,
we investigated compression performance and visual
consistency of different image encoders. We evaluated
various objective metrics in terms of both absolute and
relative quality assessment. Finally, we introduced the
SSIMULACRA 2 metric.
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