
Introduction to Cloudinary’s CLI 
Overview for Developers and Command Line Interface Users

Jen Brissman
Technical Curriculum Engineer



Topics
● What is a CLI?
● Setting Up Your Environment
● CLI Helper Tools
● Uploading Assets
● Cloudinary URLs
● Managing Assets
● Sync (Local File Management)
● Transforming Assets
● Next Steps for Further Support



What is a CLI?



Command Line Interface
CLI stands for Command Line Interface

● Text-based interface used for interacting with software and computer systems by 
entering commands into a terminal or console.

● In a CLI, users interact with the system by typing commands and receiving 
text-based feedback.

● Alternative to Graphical User Interfaces - GUIs, where users interact with software 
through graphical elements like windows, icons, and buttons.



Cloudinary CLI



Setting Up Your 
Environment



Install Python
To run Cloudinary’s CLI, you need to install 
Python, version 3.6 or higher.

$ brew update && brew upgrade

$ brew install python3

$ python3 --version

> Python 3.9.6

You can also download and 
install through Homebrew (Mac)

You can download directly from 
python.org/downloads

http://python.org/downloads/


Install Cloudinary

Next, you will need to install the Cloudinary 
CLI Package.

$ pip3 install cloudinary-cli

$ pip3 install cloudinary-cli --upgrade

Make sure you have the most updated 
package.



Install Cloudinary

Next, you will need to install the Cloudinary 
CLI Package.

$ pip3 install cloudinary-cli

$ pip3 install cloudinary-cli --upgrade

Make sure you have the most updated 
package.



Cloudinary 
Credentials



Cloudinary_URL (API Environment Variable)
You can locate your CLOUDINARY_URL on your Cloudinary Dashboard under Product Environment Credentials.



Cloudinary_URL (API Environment Variable)
The CLOUDINARY_URL contains your cloud name, API Key, and API Secret.

Important! 
Do not expose your API Secret  in your client-side code, as it creates a 

security risk and potentially allows others to access your account.



API Environment Variable Configuration
Then Export(Mac) or Set (Windows) your CLOUDINARY_URL via the CLI.

export CLOUDINARY_URL=cloudinary://API_KEY:API_SECRET@cloud_name

set CLOUDINARY_URL=cloudinary://API_KEY:API_SECRET@cloud_name



Check Cloudinary Configuration
Check your Cloudinary configuration in the CLI

$ cld config
cloud_name: cloud_name
api_key: API_KEY
api_secret: ***************CRET
private_cdn: False



from_url Configuration
You can also configure from the CLI using cld config --from_url, which will save your configuration 
for use beyond a single session.

However, future commands would need to be prefixed with cld -C cloudname, instead of cld.

$ cld config --from_url cloudinary://API_KEY:API_SECRET@cloud_name

Config cloud_name saved!

$ cld -C cloud_name config

cloud_name: cloud_name

api_key: API_KEY

api_secret: ***************CRET

You can use cld config --from_url to set 
up multiple account configurations



Digital Asset Management (DAM)



Helper Tools



Helper Tools
If you are looking for help while using the CLI, you can use the following command:

Usage: cld [OPTIONS] COMMAND [ARGS]...

Options:
 --help Show this message and exit.
 --version Show the version and exit.
 -c, --config TEXT Tell the CLI which account to run the command on by specifying an account environment variable.
 -C, --config_saved TEXT Tell the CLI which account to run the command on by specifying a saved configuration 
 -v, --verbosity LVL Either CRITICAL, ERROR, WARNING, INFO or DEBUG

Commands:
  admin Run any methods that can be called through the admin API.
  config Display the current configuration, and manage additional...
  make  Return template code for implementing the specified Cloudinary widget.
  migrate Migrate files using an existing auto-upload mapping and a file of URLs.
  provisioning Run any methods that can be called through the provisioning API.
  regen_derived Regenerate all derived assets pertaining to a named transformation, or transformation string.
  search Run the admin API search method.
  sync Synchronize between a local directory and a Cloudinary folder.
  upload_dir Upload a folder of assets, maintaining the folder structure.
  uploader Run any methods that can be called through the upload API.
  url Generate a Cloudinary URL, which you can optionally open...
  utils Call Cloudinary utility methods.

$ cld –-help   # see list of commands (below)



Basic Commands
To help you get started, here are some basic commands you can use.

$ cld –-version   # see versions of Cloudinary CLI, underlying Cloudinary Python SDK and Python

$ cld admin   # see available Admin API methods

$ cld uploader   # see available Upload API methods

$ cld search –-help   # see usage for the Search API

$ cld utils   # see available utility methods

$ cld admin --doc   # opens the Admin API reference in a browser

$ cld upload --doc   # opens the Upload API reference in a browser



Uploading



Uploading
● Upload Method
● Fetch
● Public ID
● Resource Type
● Folders
● JSON Response
● Upload Widget



Upload Method

The upload method performs an authenticated upload API call over HTTPS.

Try performing a basic upload of your own from a local folder.

● Navigate within the CLI to the local folder that contains the asset you would like to upload.
● Enter the command cld and the name of the asset you would like to upload.

$ cld upload hiking.jpg 

$ cld upload

*I am using a file called hiking.jpg



Fetch

cld url -t fetch 'https://upload.wikimedia.org/wikipedia/commons/d/d5/Mt._Hood_%288081466807%29.jpg'

● Supported for images only.

● Cached on your Cloudinary account for 
performance reasons. 

● Remote images are checked on a regular 
basis, and if the remote image changes, the 
cached image is updated accordingly.

You can fetch images from remote sources and upload them straight to Cloudinary 
entering the command url -t fetch and the URL of the image.

-t specifies that we are using a delivery type that 
differs from the default: upload



Public ID
A unique identifier for your asset that appears in the URL, which is used to reference the 
uploaded resource as well as for building dynamic delivery and transformation URLs.

If you don't supply a Public ID in the upload API call, one will be randomly assigned.

If you DO supply a Public ID, DO NOT include the file extension.

$ cld upload mountains.jpg public_id=i-love-hiking

$ cld upload mountains.jpg use_filename=true unique_filename=false

Public ID in the URL

https://res.cloudinary.com/demo/image/upload/mountains.jpg

Public ID: “i-love-hiking”

Public ID: “mountains”

$ cld upload mountains.jpg use_filename=true unique_filename=true Public ID: “mountains_yqnfod”

$ cld upload mountains.jpg Public ID: “vr1kukfernlipukpw3hr”



Resource Type
Used to indicate whether you want to upload an image, video or raw file.

You can let Cloudinary determine the type by setting the parameter to “auto”.

$ cld upload water-bottle.mp4 resource_type=auto

$ cld upload water-bottle.mp4 resource_type=video

Resource Type in the URL

https://res.cloudinary.com/demo/video/upload/water-bottle.mp4

Or you can manually define for each file.



Folders
Simply put, folders are a way to organize and divide your files within Cloudinary.

● Folder paths can be included in the Public ID parameter

$ cld upload dolomites.jpg public_id=italy/dolomites

$ cld upload dolomites.jpg folder=italy public_id=dolomites

Folders in the URL

https://res.cloudinary.com/jen-brissman/image/upload/mountains/italy/dolomites.jpg

● Folder paths can also be created in a separate Folder parameter

Public ID: “italy/dolomites”

Public ID: “italy/dolomites”

*TIP: A folder will automatically be created for you with this call, if it did not already exist.

● This works in the same way for sub folders

$ cld upload dolomites.jpg use_filename=true unique_filename=false folder=mountains/italy

Public ID: “mountains/italy/dolomites”



JSON Response
Cloudinary returns a JSON response that includes HTTP and HTTPS URLs for accessing 
the uploaded image, as well as additional image information.

{ public_id: mountains-123,

 version: '1312461204',

 width: 864,

 height: 564,

 format: 'jpg',

 created_at: '2017-08-10T09:55:32Z',

 resource_type: 'image',

 tags: [], 

 bytes: 9597, 

 type: 'upload', 

 etag: 'd1ac0ee70a9a36b14887aca7f7211737', 

 url: 'http://res.cloudinary.com/demo/image/upload/v1312461204/sample.jpg',

 secure_url: 'https://res.cloudinary.com/demo/image/upload/v1312461204/sample.jpg',

 signature: 'abcdefgc024acceb1c1baa8dca46717137fa5ae0c3',

 original_filename: 'sample'}



Upload Widget
You can implement Cloudinary’s 
Upload Widget to easily upload assets 
from the frontend of a web/mobile 
browser directly to your Cloudinary 
account, without involving any servers 
in the process. 

The widget shows upload progress 
and offers thumbnail-preview, as well 
as interactive-cropping capabilities.

Upload Widget Tutorial

Create an Upload Widget HTML 
using the CLI

$ cld make upload widget

https://cloudinary.com/documentation/upload_widget_tutorial


Cloudinary URLs



Cloudinary Delivery URL Structure
https://res.cloudinary.com/

<cloud_name>/

<resource_type>/

<type>/

<transformations>/

<version>/

<public_id>.<format>

Domain

Cloud Name

Resource Type

Delivery Type

Transformations

Version

Public ID and Format

https://res.cloudinary.com/jen-brissman/image/upload/v1702185884/mountains.jpg

<domain>/<cloud_name>/<resource_type>/<type>/<version>/<public_id>.<format>



Creating Cloudinary URLs
There are two main ways to generate a Cloudinary delivery URL in the CLI. Let’s create a URL 
with the public ID of “mountains” and scale it to a width of 300 pixels.

$ cld utils cloudinary_url mountains width=300 crop=scale

https://res.cloudinary.com/demo/image/upload/c_scale,w_300/mountains

Same exact URL output for both:

The utils command enables you to call Cloudinary utility methods. One of these is the 
cloudinary_url method, for embedding images in web pages using SDKs.

The Helper command, url, generates a Cloudinary URL. 
Note: Unless the URL is opened, the derived asset is not generated.

$ cld url mountains w_300,c_scale



Managing Assets



Upload API Admin API



Managing Assets
● List Resources
● Search
● Rename
● Tags
● Delete
● Invalidate and Versioning



List Resources
Using Admin API methods with the Cloudinary CLI, you can list all of your uploaded 
assets by many different sets of criteria.

● List all images

● List all images with a given prefix

$ cld admin resources

$ cld admin resources type=upload prefix=sample

● List all images with a given tag

$ cld admin resources tags=”blurry”

● List asset with a given public ID

$ cld admin resource mountain-123



Search
The search command runs the Admin API search method. This method allows you to 
filter and retrieve information on all the assets in your product environment with the help 
of query expressions in a Lucene-like query language.

● Search for images with the tag “blurry”

● Lucene-like query

$ cld admin search tags=blurry

$ cld admin search -f tags -n 30 -s public_id asc "resource_type:image AND 
tags=bird AND uploaded_at>1d AND bytes>100k"



Rename
Renaming immediately and permanently updates the assets in your cloud storage.

$ cld upload rename mountains tetons

 $ cld upload rename [old public ID] [new public ID]

Any existing URLs of renamed assets and their 
associated derived assets are no longer valid.



Tags
With tags you can categorize and organize your assets. You can add tags to your assets 
at any time, whether during upload or after the asset is in your account. 

$ cld upload tent.jpg public_id=tent tags="tent, stars, grass"

$ cld add_tag italy public_ids=tent

You can also remove tags to uploaded assets

$ cld remove_tag grass public_ids=tent

$ cld remove_all_tags tent

$ cld uploader upload "tent.jpg" categorization=aws_rek_tagging,google_tagging auto_tagging=".95"

You can also use our AI auto tagging add-ons to further automate the tagging process



Delete
The destroy method of the Upload API immediately destroys and permanently updates the 
assets in your cloud storage.

$ cld uploader destroy tent

You can use the delete_resources method of the Admin API delete multiple assets at one 
time by their Public ID or even a prefix in the Public ID with our Admin API.

$ cld admin delete_resources tetons,i-love-hiking

$ cld admin delete_resources_by_prefix mountains



Invalidate and Versioning
Prevent users from accessing deleted or renamed assets by sending an invalidation request.  

● This instructs the CDN to remove cached copies of the old asset.
● The old cached media asset can remain on the CDN servers for up to 30 days.
● The next request for the asset will pull the newest copy from your Cloudinary storage, or 

will return an error if the asset no longer exists.
● This same approach can be done with versioning too, bypassing the CDN cached version 

and forcing delivery of the newest asset.

$ cld destroy sample invalidate=true

Note: From within the UI/DAM, an invalidate request is automatically included whenever you 
delete, rename, or overwrite media assets.

$ cld admin resource sample versions=true

To check versioning:



Sync 
(Local File Management)



Sync (Local File Management)
Syncing Local Files and Folders to Cloudinary. Upload from a local directory to the cloud 
or download a cloud directory to your local file system. This is unique to the CLI, it doesn't 
exist in SDKs.

Similar to git syntax, sync allows you to push to the cloud and pull from the cloud. 

Keep in mind that in this case sync does not mean constantly syncing or “synchronizing”.

For perpetual file syncing check out:
Cloudy Desktop from Cloudinary Labs 

https://cloudinary.com/labs/extendability
https://cloudinary.com/labs/extendability


Sync (Local File Management)
Sync example - If you have a local directory under your root, “~/Pictures/images” 
that you want to upload to a folder in your Cloudinary account named “test-images”, 
you can use the push option.  

If you want to download the “test-assets” folder from Cloudinary to another local directory, 
for example “~/Desktop/pulled-from-cld”,  you can use the pull option.

$ cld sync --push ~/Desktop/cli-course test-assets

$ cld sync --pull ~/Desktop/pulled-from-cld test-assets



Transformations



Cloudinary Transformations

https://cloudinary-training.github.io/cld-periodic-table/
https://cloudinary-training.github.io/cld-periodic-table/


Example Assets
Let’s use this photo to perform various 
Cloudinary transformations via the CLI.

$ cld upload hiker.jpg public_id=hiker 

First, we’ll upload two assets to our account with 
designated Public IDs of “hiker” and “mountains”

Then we can easily reference the asset by this 
Public ID throughout this transformations 
section.

$ cld upload mountains.jpg public_id=mountains 



Resize
You can resize any image or video by editing its 
width (w_) and/or height (h_)

Decreasing the width and/or height of the asset 
will commonly decrease the file size, optimizing 
it for a specific project.

http://res.cloudinary.com/jen-brissman/image/upload/w_300/hiker

$ cld url hiker w_300

The default is scale. If you don’t provide one of 
the parameters it will automatically scale for you.

You can also make transformations in the URL. 1.05 MB 15.88 KB



Format (f_auto)
Use Cloudinary to automatically convert 
assets to other formats for displaying in your 
web site or application (output formats).

Specify image and video format, e.g. on 
native mobile, based on device capabilities.

Allow Cloudinary to deliver the optimal format 
for web delivery scenarios with f_auto for 
images and video.

http://res.cloudinary.com/jen-brissman/image/upload/f_auto/hiker

$ cld url hiker f_auto JPG - 1.05 MB AVIF - 492.4 KB



Crop with Gravity
You can use Gravity to specify a location 
in an image or video that is used as the 
focus for another transformation. 

Let’s make a 1:1 aspect ratio by adjusting 
the height and width to be 200 each. 
Then perform a thumb crop. 

We can utilize g_auto to make sure the 
face is centered in the frame.

https://res.cloudinary.com/jen-brissman/image/upload/w_500,h_500,c_thumb,g_auto/hiker

$ cld url hiker w_500,h_500,c_thumb,g_auto



Rounding for Aesthetics
For rounding, you can use the radius parameter to 
control the degree of rounding applied to the image.

Here we will use r_max to create a complete circle.

We will also use the grayscale effect, e_grayscale.

Rounded images are commonly used for circular profile 
pictures, icons, or buttons in user interfaces. 

If you have a design theme that involves rounded 
elements, rounding images can help maintain a 
consistent visual style throughout your application or 
website.

https://res.cloudinary.com/jen-brissman/image/upload/w_500,h_500,c_thumb,g_auto,r_max,e_grayscale,f_auto/hiker

$ cld url hiker w_500,h_500,c_thumb,g_auto,r_max,e_grayscale,f_auto



Quality (q_auto)
Quality controls the visual quality and 
compression level of assets. 

With q_auto, you allow Cloudinary to 
deliver the optimal quality of images and 
videos for each viewing device.

It compresses your asset without a visual 
difference, but a big difference in the file 
size as you can see.

http://res.cloudinary.com/jen-brissman/image/upload/q_auto/mountains

$ cld url mountains q_auto

8.53 MB  - JPG

3.88 MB  - JPG

No visual 
difference



Next Steps and
Further Support



The Cloudinary Academy offers both self-paced courses and live classes taught by Cloudinary experts. 

training.cloudinary.com

Cloudinary Academy

https://training.cloudinary.com/


Recommended Courses
Those who are new to Cloudinary's APIs can benefit from 

a variety of helpful, self-paced courses that provide 

comprehensive learning resources. 

● Introduction to Cloudinary Programmable Media 
(90-Minutes)

● Understanding Cloudinary Programmable Media 
Terminology (30-Minutes)

● Cloudinary JumpStart for New Developer Users 
(~40-Minutes)

● Advanced Concepts for Developers (~16 hours)

● Introduction for Node.js Developers (90 minutes)

● Fundamentals for Developers (~9 hours)

training.cloudinary.com

https://training.cloudinary.com/learn/course/introduction-to-cloudinary-programmable-media-xx-minute-course
https://training.cloudinary.com/learn/course/introduction-to-cloudinary-programmable-media-xx-minute-course
https://training.cloudinary.com/learn/enroll/b30eb819-0990-49bd-9eb0-0e44171b4fc4
https://training.cloudinary.com/learn/enroll/b30eb819-0990-49bd-9eb0-0e44171b4fc4
https://training.cloudinary.com/courses/cloudinary-jumpstart-for-new-developer-users-40-minute-course
https://training.cloudinary.com/courses/cloudinary-jumpstart-for-new-developer-users-40-minute-course
https://training.cloudinary.com/courses/advanced-concepts-for-developers-self-paced
https://training.cloudinary.com/courses/introduction-for-api-users-developers
https://training.cloudinary.com/courses/cloudinary-fundamentals-for-developers
https://training.cloudinary.com/


Review our GitHub Repositories
Access our sample projects to help you with building your own work using Cloudinary.

github.com/cloudinary-training

github.com/cloudinary

https://github.com/cloudinary-training
https://github.com/cloudinary-training
https://github.com/cloudinary
https://github.com/cloudinary
https://github.com/cloudinary-training
https://github.com/cloudinary


Engineering Support
We are always happy to answer your questions, as we have dedicated support 

staff for our developer community.

support.cloudinary.com/hc/en-us/requests/new

https://support.cloudinary.com/hc/en-us/requests/new


Join Our Community Forums
Ask questions to staff or other users in our dedicated communities.

community.cloudinary.com

https://community.cloudinary.com/
https://community.cloudinary.com/
https://community.cloudinary.com/


Join Our Discord Discussions

discord.gg/cloudinary

Connect with Cloudinary users and staff on Discord!

https://discord.gg/cloudinary
https://discord.gg/cloudinary
https://discord.gg/cloudinary


Thank you


